Kong Pongo 使用教程
1. 项目介绍
Kong Pongo 是一个用于在 Kong 上运行插件测试的工具。它通过创建 Docker 容器和网络来隔离环境,并提供 Kong 通常需要的依赖项(如 Cassandra、PostgreSQL 等)。Pongo 使得开发者可以在本地环境中轻松测试 Kong 插件,而无需将插件部署到开发或 staging 服务器上。
2. 项目快速启动
2.1 安装 Pongo
首先,克隆 Pongo 仓库并安装 Pongo:
PATH=$PATH:~/local/bin
git clone https://github.com/Kong/kong-pongo.git
mkdir -p ~/local/bin
ln -s $(realpath kong-pongo/pongo.sh) ~/local/bin/pongo
2.2 配置 Pongo
在插件目录中,创建一个 pongo/pongorc 文件来配置 Pongo。例如,如果你不需要 Cassandra 数据库,可以在 pongorc 文件中添加以下内容:
--no-cassandra
2.3 运行测试
假设当前目录是一个用 Lua 编写的 Kong 插件目录,运行测试的命令如下:
KONG_VERSION=$(VER) ~/local/bin/pongo.sh run --no-cassandra --no-postgres
3. 应用案例和最佳实践
3.1 插件开发与测试
在开发 Kong 插件时,Pongo 提供了一个隔离的环境来运行和测试插件逻辑。开发者可以在本地编写测试代码,并模拟依赖项(如 API 调用和数据库调用),从而在不部署到开发或 staging 服务器的情况下验证插件功能。
3.2 CI/CD 集成
Pongo 可以轻松集成到 CI/CD 设置中。以下是一个基于 GitHub Actions 的示例配置:
name: "Test"
on: [push, pull_request]
jobs:
test:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
kongVersion: ["2.8.x", "3.5.x", "dev"]
steps:
- uses: actions/checkout@v3
- uses: Kong/kong-pongo-action@v1
with:
pongo_version: master
kong_version: $[[ matrix.kongVersion ]]
- run: pongo run
4. 典型生态项目
4.1 Kong Gateway
Kong Gateway 是一个开源的 API 网关,Pongo 是用于测试 Kong 插件的工具。通过 Pongo,开发者可以在本地环境中模拟生产环境,确保插件在部署到生产环境之前能够正常工作。
4.2 Docker
Pongo 依赖 Docker 和 Docker Compose 来创建隔离的测试环境。开发者需要安装 Docker 和 Docker Compose 才能使用 Pongo。
4.3 LuaRocks
LuaRocks 是 Lua 的包管理器,Pongo 使用 LuaRocks 来管理插件的依赖项。开发者可以通过 LuaRocks 安装和管理插件所需的库。
通过以上步骤,开发者可以快速上手并使用 Kong Pongo 进行插件开发和测试。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00