React Three Fiber 在 Next.js 中解决 document is not defined 错误的最佳实践
在使用 React Three Fiber 结合 Next.js 开发 3D 应用时,开发者经常会遇到"ReferenceError: document is not defined"的错误。这个错误通常发生在构建或渲染过程中,特别是在使用 useLoader 加载纹理资源时。本文将深入分析这个问题的根源,并提供几种可靠的解决方案。
问题根源分析
这个错误的本质原因是 Next.js 的服务器端渲染(SSR)机制与浏览器特定 API 的冲突。具体来说:
-
服务器端与客户端环境差异:Next.js 默认会在服务器端预渲染页面,而 document 对象是浏览器环境特有的 API,在 Node.js 服务器环境中不存在。
-
TextureLoader 的浏览器依赖:Three.js 的 TextureLoader 内部依赖于浏览器 API 来加载和解析图像资源,这包括创建 Image 对象、处理 canvas 等操作。
-
useLoader 的工作机制:React Three Fiber 的 useLoader 钩子在内部使用 TextureLoader,因此继承了同样的浏览器环境依赖。
解决方案
方案一:禁用 SSR 渲染
最彻底的解决方案是使用 Next.js 的动态导入功能禁用特定组件的服务器端渲染:
'use client';
import dynamic from 'next/dynamic';
const Scene = dynamic(() => import('./Scene'), {
ssr: false
});
function Page() {
return <Scene />;
}
这种方法确保包含 3D 内容的组件只在客户端渲染,完全避免了服务器端环境的问题。
方案二:合理组织组件结构
将使用浏览器 API 的代码限制在 Canvas 组件内部,遵循 React Three Fiber 的最佳实践:
function Background() {
const texture = useLoader(THREE.TextureLoader, "/bg.png");
return <primitive object={texture} attach="background" />;
}
function Scene() {
return (
<Canvas>
<Background />
{/* 其他3D内容 */}
</Canvas>
);
}
这种结构不仅解决了 SSR 问题,还使代码更加模块化和可维护。
方案三:条件性加载资源
对于简单的场景,可以使用条件判断或错误处理来避免服务器端加载:
function Scene() {
let texture = null;
if (typeof window !== 'undefined') {
texture = new THREE.TextureLoader().load("/bg.png");
}
return (
<Canvas>
{/* 使用texture */}
</Canvas>
);
}
进阶建议
-
性能优化:对于复杂的场景,考虑使用 GLTFLoader 替代 TextureLoader 加载优化后的 3D 资源。
-
加载状态处理:实现加载进度指示器,提升用户体验。
-
资源管理:使用 drei 库中的资源管理工具,如 useTexture,它提供了更好的错误处理和加载控制。
-
环境适配:针对不同设备性能,实现画质自适应调整。
总结
在 Next.js 中使用 React Three Fiber 开发 3D 应用时,理解服务器端渲染与浏览器环境的差异至关重要。通过合理组织组件结构、选择性禁用 SSR 或采用条件加载策略,可以有效解决 document is not defined 这类环境相关错误。这些解决方案不仅能解决当前问题,还能为应用提供更好的可维护性和用户体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00