React Three Fiber 在 Next.js 中解决 document is not defined 错误的最佳实践
在使用 React Three Fiber 结合 Next.js 开发 3D 应用时,开发者经常会遇到"ReferenceError: document is not defined"的错误。这个错误通常发生在构建或渲染过程中,特别是在使用 useLoader 加载纹理资源时。本文将深入分析这个问题的根源,并提供几种可靠的解决方案。
问题根源分析
这个错误的本质原因是 Next.js 的服务器端渲染(SSR)机制与浏览器特定 API 的冲突。具体来说:
-
服务器端与客户端环境差异:Next.js 默认会在服务器端预渲染页面,而 document 对象是浏览器环境特有的 API,在 Node.js 服务器环境中不存在。
-
TextureLoader 的浏览器依赖:Three.js 的 TextureLoader 内部依赖于浏览器 API 来加载和解析图像资源,这包括创建 Image 对象、处理 canvas 等操作。
-
useLoader 的工作机制:React Three Fiber 的 useLoader 钩子在内部使用 TextureLoader,因此继承了同样的浏览器环境依赖。
解决方案
方案一:禁用 SSR 渲染
最彻底的解决方案是使用 Next.js 的动态导入功能禁用特定组件的服务器端渲染:
'use client';
import dynamic from 'next/dynamic';
const Scene = dynamic(() => import('./Scene'), {
ssr: false
});
function Page() {
return <Scene />;
}
这种方法确保包含 3D 内容的组件只在客户端渲染,完全避免了服务器端环境的问题。
方案二:合理组织组件结构
将使用浏览器 API 的代码限制在 Canvas 组件内部,遵循 React Three Fiber 的最佳实践:
function Background() {
const texture = useLoader(THREE.TextureLoader, "/bg.png");
return <primitive object={texture} attach="background" />;
}
function Scene() {
return (
<Canvas>
<Background />
{/* 其他3D内容 */}
</Canvas>
);
}
这种结构不仅解决了 SSR 问题,还使代码更加模块化和可维护。
方案三:条件性加载资源
对于简单的场景,可以使用条件判断或错误处理来避免服务器端加载:
function Scene() {
let texture = null;
if (typeof window !== 'undefined') {
texture = new THREE.TextureLoader().load("/bg.png");
}
return (
<Canvas>
{/* 使用texture */}
</Canvas>
);
}
进阶建议
-
性能优化:对于复杂的场景,考虑使用 GLTFLoader 替代 TextureLoader 加载优化后的 3D 资源。
-
加载状态处理:实现加载进度指示器,提升用户体验。
-
资源管理:使用 drei 库中的资源管理工具,如 useTexture,它提供了更好的错误处理和加载控制。
-
环境适配:针对不同设备性能,实现画质自适应调整。
总结
在 Next.js 中使用 React Three Fiber 开发 3D 应用时,理解服务器端渲染与浏览器环境的差异至关重要。通过合理组织组件结构、选择性禁用 SSR 或采用条件加载策略,可以有效解决 document is not defined 这类环境相关错误。这些解决方案不仅能解决当前问题,还能为应用提供更好的可维护性和用户体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00