React Three Fiber 在 Next.js 中解决 document is not defined 错误的最佳实践
在使用 React Three Fiber 结合 Next.js 开发 3D 应用时,开发者经常会遇到"ReferenceError: document is not defined"的错误。这个错误通常发生在构建或渲染过程中,特别是在使用 useLoader 加载纹理资源时。本文将深入分析这个问题的根源,并提供几种可靠的解决方案。
问题根源分析
这个错误的本质原因是 Next.js 的服务器端渲染(SSR)机制与浏览器特定 API 的冲突。具体来说:
-
服务器端与客户端环境差异:Next.js 默认会在服务器端预渲染页面,而 document 对象是浏览器环境特有的 API,在 Node.js 服务器环境中不存在。
-
TextureLoader 的浏览器依赖:Three.js 的 TextureLoader 内部依赖于浏览器 API 来加载和解析图像资源,这包括创建 Image 对象、处理 canvas 等操作。
-
useLoader 的工作机制:React Three Fiber 的 useLoader 钩子在内部使用 TextureLoader,因此继承了同样的浏览器环境依赖。
解决方案
方案一:禁用 SSR 渲染
最彻底的解决方案是使用 Next.js 的动态导入功能禁用特定组件的服务器端渲染:
'use client';
import dynamic from 'next/dynamic';
const Scene = dynamic(() => import('./Scene'), {
ssr: false
});
function Page() {
return <Scene />;
}
这种方法确保包含 3D 内容的组件只在客户端渲染,完全避免了服务器端环境的问题。
方案二:合理组织组件结构
将使用浏览器 API 的代码限制在 Canvas 组件内部,遵循 React Three Fiber 的最佳实践:
function Background() {
const texture = useLoader(THREE.TextureLoader, "/bg.png");
return <primitive object={texture} attach="background" />;
}
function Scene() {
return (
<Canvas>
<Background />
{/* 其他3D内容 */}
</Canvas>
);
}
这种结构不仅解决了 SSR 问题,还使代码更加模块化和可维护。
方案三:条件性加载资源
对于简单的场景,可以使用条件判断或错误处理来避免服务器端加载:
function Scene() {
let texture = null;
if (typeof window !== 'undefined') {
texture = new THREE.TextureLoader().load("/bg.png");
}
return (
<Canvas>
{/* 使用texture */}
</Canvas>
);
}
进阶建议
-
性能优化:对于复杂的场景,考虑使用 GLTFLoader 替代 TextureLoader 加载优化后的 3D 资源。
-
加载状态处理:实现加载进度指示器,提升用户体验。
-
资源管理:使用 drei 库中的资源管理工具,如 useTexture,它提供了更好的错误处理和加载控制。
-
环境适配:针对不同设备性能,实现画质自适应调整。
总结
在 Next.js 中使用 React Three Fiber 开发 3D 应用时,理解服务器端渲染与浏览器环境的差异至关重要。通过合理组织组件结构、选择性禁用 SSR 或采用条件加载策略,可以有效解决 document is not defined 这类环境相关错误。这些解决方案不仅能解决当前问题,还能为应用提供更好的可维护性和用户体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00