【亲测免费】 基于MTCNN+CNN的疲劳驾驶检测系统搭建教程
项目介绍
本项目是一个使用MTCNN(Multi-task Cascaded Convolutional Networks)和CNN(Convolutional Neural Networks)相结合的疲劳及危险驾驶检测系统。它由Aristochi在GitHub上维护(项目链接),旨在通过实时监控驾驶员的面部特征,特别是眼部和口腔的状态,来评估其疲劳程度,并预警潜在的危险驾驶行为。该系统利用了MTCNN高效的人脸检测能力,以及后续CNN对特定面部特征(如眼睛开闭、嘴部动作)的精细分类,以此判断疲劳驾驶的迹象。
项目快速启动
环境准备
确保你的开发环境已安装Python、TensorFlow、Keras及相关依赖库。建议使用Anaconda进行环境管理。
pip install tensorflow numpy opencv-python matplotlib pillow
git clone https://github.com/Aristochi/MTCNN_CNN_DangerDrivingDetection.git
cd MTCNN_CNN_DangerDrivingDetection
运行示例
在 cloned 仓库的根目录下,你需要有一个预先训练好的模型和对应的数据集。虽然原贴提到的数据集链接未提供在这里,但假设仓库内包含了必要的脚本和配置文件。执行快速测试:
python detect_from_video.py --video_path your_video.mp4
这里的detect_from_video.py应当是项目中用于从视频中检测疲劳驾驶行为的脚本,你需要根据实际路径替换your_video.mp4。此命令将会运用模型对视频进行处理,标记出疲劳驾驶的片段。
应用案例与最佳实践
应用本系统于车载设备中,最佳实践包括定期校准模型以适应不同的光照和驾驶员特征变化。在实践中,确保持续收集实际驾驶场景的数据,用于进一步训练模型,提升精确度。此外,集成报警机制,当系统检测到疲劳迹象时,通过声音或视觉提示提醒驾驶员,是实施的关键步骤。
典型生态项目
尽管直接关联的典型生态项目未详细列出,但类似的疲劳驾驶检测技术通常融入更广泛的智能驾驶辅助系统(ADAS)中。这类系统可能还包括基于机器视觉的道路标志识别、车辆距离监测等功能。开发者可以探索将本项目与其他开源的ADAS组件集成,比如OpenCV用于额外的图像处理,或是Apollo自动驾驶平台中的相关模块,以构建更为全面的驾驶辅助解决方案。
请注意,上述“快速启动”中的命令和文件名是示例性的,实际操作时应参照项目仓库中的最新说明和文件结构进行调整。务必关注项目GitHub页面的README文件,以获得最新指南和详细步骤。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00