解决fullstackhero/dotnet-starter-kit中的软删除功能显示问题
在fullstackhero/dotnet-starter-kit项目中,开发者报告了一个关于软删除功能的问题:虽然数据在数据库中被正确标记为软删除状态,但这些记录仍然会显示在Blazor用户界面中。本文将深入分析这个问题及其解决方案。
问题分析
该项目的软删除机制是通过在实体类中添加"DeletedOn"和"DeletedBy"字段来实现的。当用户执行删除操作时,系统不会真正从数据库中移除记录,而是设置这些字段的值来标记记录为已删除状态。然而,前端界面没有正确过滤这些已标记为删除的记录,导致它们仍然可见。
解决方案
要解决这个问题,我们需要在数据查询时添加过滤条件,排除已被软删除的记录。具体来说,在BrandRepository.cs文件中,我们需要修改GetAllAsync方法,添加对软删除记录的过滤:
public async Task<List<Brand>> GetAllAsync()
{
return await _dbContext.Brands
.Where(x => x.DeletedOn == null) // 添加这行过滤条件
.ToListAsync();
}
同样的修改也需要应用到其他实体的Repository类中,如ProductRepository和TodoRepository,以确保所有软删除的记录都不会显示在用户界面中。
项目启动时的浏览器窗口问题
另一个被提及的问题是项目启动时自动打开的浏览器窗口使用了随机端口,导致无法正常登录。这实际上是Visual Studio的默认行为,可以通过修改launchSettings.json文件来控制:
{
"profiles": {
"YourProfileName": {
"commandName": "Project",
"launchBrowser": false, // 设置为false禁用自动打开浏览器
"applicationUrl": "https://localhost:7100;http://localhost:5100",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"
}
}
}
}
关于软删除实现的优化建议
虽然当前的软删除实现方式可以工作,但我们可以进一步优化。建议创建一个基类AuditableEntity,其中包含软删除相关的字段,然后让需要支持软删除的实体继承这个基类。这样既保持了代码的整洁性,又方便统一管理软删除逻辑:
public abstract class AuditableEntity : IAuditableEntity
{
public DateTime? DeletedOn { get; set; }
public string? DeletedBy { get; set; }
// 其他审计字段...
}
public class Brand : AuditableEntity
{
// Brand特有的属性...
}
这种实现方式更加灵活,只有需要软删除功能的实体才继承AuditableEntity,避免了不必要的字段污染。
总结
通过添加查询过滤条件和优化软删除实现方式,我们解决了fullstackhero/dotnet-starter-kit项目中软删除记录仍然显示的问题。同时,我们也了解了如何控制项目启动时的浏览器行为。这些修改不仅解决了当前的问题,还为项目的可维护性和扩展性提供了更好的基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00