Ceres Solver 中 AutoDiffCostFunction 的使用注意事项
问题背景
在使用 Ceres Solver 进行非线性优化时,AutoDiffCostFunction 是一个常用的自动微分工具,它能够自动计算代价函数的导数。然而,在 Ceres Solver 2.2.0 版本中,开发者可能会遇到一个常见的编译错误,这与 AutoDiffCostFunction 的构造函数使用方式有关。
问题现象
当开发者按照示例代码使用 AutoDiffCostFunction 时,可能会遇到如下编译错误:
error: no matching function for call to 'ceres::AutoDiffCostFunction<CostFunctor, 1, 1>::AutoDiffCostFunction()'
这个错误通常出现在类似下面的代码中:
ceres::CostFunction* cost_function =
new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>();
problem.AddResidualBlock(cost_function, nullptr, &x);
原因分析
这个问题的根本原因在于 Ceres Solver 2.2.0 版本中 AutoDiffCostFunction 的构造函数设计。在 2.2.0 版本中,AutoDiffCostFunction 没有提供无参数的构造函数,而是需要显式地传递一个 CostFunctor 对象。
具体来说,AutoDiffCostFunction 在 2.2.0 版本中有以下几种构造函数:
- 移动构造函数:
AutoDiffCostFunction(AutoDiffCostFunction&& other) - 带 functor 指针和所有权参数的构造函数:
explicit AutoDiffCostFunction(CostFunctor* functor, Ownership ownership) - 带 functor 指针、残差数维度和所有权参数的构造函数:
AutoDiffCostFunction(CostFunctor* functor, int num_residuals, Ownership ownership)
解决方案
要解决这个问题,开发者有以下几种选择:
方案一:使用正确的构造函数
正确的使用方式应该是传递一个 CostFunctor 对象:
ceres::CostFunction* cost_function =
new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);
方案二:升级到最新版本
在 Ceres Solver 的主分支(master)中,这个问题已经被修复,可以直接使用无参数的构造函数。如果开发者可以升级到最新版本,这个问题将不再出现。
方案三:使用对应版本的示例代码
确保使用的示例代码与安装的 Ceres Solver 版本一致。2.2.0 版本的示例代码中已经包含了正确的构造函数调用方式。
深入理解
AutoDiffCostFunction 的设计变化反映了 Ceres Solver 对资源管理和接口易用性的权衡。在早期版本中,要求显式传递 functor 对象可以更明确地控制资源所有权。而在新版本中,为了简化接口,增加了无参数构造函数,内部会自动创建 functor 对象。
最佳实践
- 始终检查使用的 Ceres Solver 版本
- 确保示例代码与安装版本匹配
- 在使用 AutoDiffCostFunction 时,明确资源所有权
- 考虑使用智能指针管理 CostFunction 对象,避免内存泄漏
总结
Ceres Solver 是一个功能强大的非线性优化库,但在不同版本间可能存在接口差异。理解 AutoDiffCostFunction 的构造函数变化,可以帮助开发者避免常见的编译错误,更高效地使用这个工具进行优化问题的求解。对于新项目,建议使用最新版本的 Ceres Solver,而对于已有项目,则需要确保代码与安装版本的一致性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00