Ceres Solver 中 AutoDiffCostFunction 的使用注意事项
问题背景
在使用 Ceres Solver 进行非线性优化时,AutoDiffCostFunction 是一个常用的自动微分工具,它能够自动计算代价函数的导数。然而,在 Ceres Solver 2.2.0 版本中,开发者可能会遇到一个常见的编译错误,这与 AutoDiffCostFunction 的构造函数使用方式有关。
问题现象
当开发者按照示例代码使用 AutoDiffCostFunction 时,可能会遇到如下编译错误:
error: no matching function for call to 'ceres::AutoDiffCostFunction<CostFunctor, 1, 1>::AutoDiffCostFunction()'
这个错误通常出现在类似下面的代码中:
ceres::CostFunction* cost_function =
new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>();
problem.AddResidualBlock(cost_function, nullptr, &x);
原因分析
这个问题的根本原因在于 Ceres Solver 2.2.0 版本中 AutoDiffCostFunction 的构造函数设计。在 2.2.0 版本中,AutoDiffCostFunction 没有提供无参数的构造函数,而是需要显式地传递一个 CostFunctor 对象。
具体来说,AutoDiffCostFunction 在 2.2.0 版本中有以下几种构造函数:
- 移动构造函数:
AutoDiffCostFunction(AutoDiffCostFunction&& other)
- 带 functor 指针和所有权参数的构造函数:
explicit AutoDiffCostFunction(CostFunctor* functor, Ownership ownership)
- 带 functor 指针、残差数维度和所有权参数的构造函数:
AutoDiffCostFunction(CostFunctor* functor, int num_residuals, Ownership ownership)
解决方案
要解决这个问题,开发者有以下几种选择:
方案一:使用正确的构造函数
正确的使用方式应该是传递一个 CostFunctor 对象:
ceres::CostFunction* cost_function =
new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);
方案二:升级到最新版本
在 Ceres Solver 的主分支(master)中,这个问题已经被修复,可以直接使用无参数的构造函数。如果开发者可以升级到最新版本,这个问题将不再出现。
方案三:使用对应版本的示例代码
确保使用的示例代码与安装的 Ceres Solver 版本一致。2.2.0 版本的示例代码中已经包含了正确的构造函数调用方式。
深入理解
AutoDiffCostFunction 的设计变化反映了 Ceres Solver 对资源管理和接口易用性的权衡。在早期版本中,要求显式传递 functor 对象可以更明确地控制资源所有权。而在新版本中,为了简化接口,增加了无参数构造函数,内部会自动创建 functor 对象。
最佳实践
- 始终检查使用的 Ceres Solver 版本
- 确保示例代码与安装版本匹配
- 在使用 AutoDiffCostFunction 时,明确资源所有权
- 考虑使用智能指针管理 CostFunction 对象,避免内存泄漏
总结
Ceres Solver 是一个功能强大的非线性优化库,但在不同版本间可能存在接口差异。理解 AutoDiffCostFunction 的构造函数变化,可以帮助开发者避免常见的编译错误,更高效地使用这个工具进行优化问题的求解。对于新项目,建议使用最新版本的 Ceres Solver,而对于已有项目,则需要确保代码与安装版本的一致性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









