ESLint插件Perfectionist中sort-classes规则的默认分组优化
在JavaScript/TypeScript开发中,类的成员排序对于代码的可读性和维护性至关重要。ESLint插件Perfectionist提供的sort-classes规则能够帮助开发者自动保持类成员的合理排序。然而,该规则的默认分组配置存在一些可以优化的地方。
默认分组的问题分析
当前版本的sort-classes规则默认配置存在三个主要问题:
-
访问修饰符排序不合理:公共成员(public)被默认排序在受保护(protected)和私有(private)成员之后,这与大多数编码规范中"从最开放到最严格"的排序原则相悖。
-
属性访问器分类不当:getter和setter方法被归类为普通方法(method)而非属性(property),导致它们与相关属性分离排序。
-
函数属性处理不一致:使用箭头函数或bind绑定的方法(function-property)没有被归类到方法组中,造成功能相似但形式不同的成员被分开排序。
优化后的分组方案
经过社区讨论和实践验证,以下分组配置能够更好地满足开发者的实际需求:
groups: [
'index-signature',
'static-property',
'protected-static-property',
'private-static-property',
'static-block',
['property', 'accessor-property', 'get-method', 'set-method'],
['protected-property', 'protected-accessor-property', 'protected-get-method', 'protected-set-method'],
['private-property', 'private-accessor-property', 'private-get-method', 'private-set-method'],
'constructor',
['static-method', 'static-function-property'],
['protected-static-method', 'protected-static-function-property'],
['private-static-method', 'private-static-function-property'],
['method', 'function-property'],
['protected-method', 'protected-function-property'],
['private-method', 'private-function-property'],
'unknown',
]
这个优化方案实现了:
-
合理的访问修饰符顺序:公共成员现在排在受保护和私有成员之前,遵循了从开放到封闭的原则。
-
统一的属性分类:getter和setter方法与普通属性归为一组,保持了属性的完整性。
-
一致的方法处理:无论是传统方法还是函数属性形式的方法,现在都被归类在一起。
版本兼容性考虑
由于修改默认配置属于破坏性变更(breaking change),这项优化计划将在Perfectionist的下一个主要版本(v4)中发布。在此之前,开发者可以通过手动配置的方式应用这些改进。
对于现有项目,建议:
- 评估当前代码库是否依赖现有排序行为
- 逐步过渡到新配置,而非一次性全面切换
- 在团队内部达成排序规范共识后再进行配置变更
最佳实践建议
在实际项目中应用类成员排序时,还应该考虑:
-
与团队规范保持一致:排序规则应该反映团队约定的代码组织方式
-
结合其他规则使用:sort-classes规则最好与成员访问修饰符、装饰器等规则配合使用
-
文档化排序策略:在项目文档中明确说明采用的排序标准,方便新成员快速上手
通过合理配置sort-classes规则,可以显著提升大型项目中类定义的可读性和一致性,减少因成员顺序混乱导致的维护成本。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00