Drizzle ORM 中批量插入数据时GENERATED ALWAYS AS IDENTITY字段的处理
在PostgreSQL数据库开发中,使用Drizzle ORM时遇到的一个常见问题是关于自动生成主键的处理方式。本文将深入分析这个问题及其解决方案。
问题背景
当我们在PostgreSQL中定义表结构时,通常会为表的主键设置自动生成功能。在Drizzle ORM中,有两种常见的方式来实现这一点:
- 使用
serial类型:
id: serial("id").primaryKey()
- 使用
integer类型配合generatedAlwaysAsIdentity():
id: integer("id").primaryKey().generatedAlwaysAsIdentity()
这两种方式在PostgreSQL底层实现上是等价的,都会创建一个自动递增的ID列。然而,在Drizzle ORM的早期版本(0.33.0)中,当尝试批量插入数据时,第二种方式会出现错误。
问题表现
使用generatedAlwaysAsIdentity()方式定义ID列后,如果尝试执行批量插入操作:
await db.insert(test).values([
{ name: "item 1" },
{ name: "item 2" },
{ name: "item 3" },
]);
系统会抛出错误:"cannot insert into column 'id'",提示该列被定义为GENERATED ALWAYS,不能直接插入值。
有趣的是,如果只插入单条记录,这个定义却能正常工作:
await db.insert(test).values({ name: "item 1" });
技术原因
这个问题的根源在于PostgreSQL对GENERATED ALWAYS AS IDENTITY列的处理机制。当批量插入数据时,PostgreSQL默认会尝试为所有列提供值,包括那些定义为GENERATED ALWAYS的列。而对于单条记录插入,Drizzle ORM生成的SQL语句会明确省略ID列。
在PostgreSQL中,要解决这个问题,需要在INSERT语句中使用OVERRIDING SYSTEM VALUE子句,明确告诉数据库系统应该覆盖自动生成的值(尽管在这个案例中我们实际上不需要提供值)。
解决方案
Drizzle ORM团队在0.36.1版本中修复了这个问题。新版本会正确处理批量插入时GENERATED ALWAYS AS IDENTITY列的情况,自动生成适当的SQL语句。
对于开发者来说,现在可以安全地使用以下两种方式定义自动递增主键:
- 传统serial方式(向后兼容):
id: serial("id").primaryKey()
- 标准SQL方式(推荐):
id: integer("id").primaryKey().generatedAlwaysAsIdentity()
两种方式现在都能正确处理单条和批量插入操作。
最佳实践
-
对于新项目,建议使用
generatedAlwaysAsIdentity()方式,因为这是SQL标准的一部分,而serial是PostgreSQL特有的语法。 -
确保使用Drizzle ORM 0.36.1或更高版本,以获得最佳的兼容性和稳定性。
-
在设计表结构时,考虑未来可能的扩展需求,选择最适合项目长期维护的主键生成策略。
通过理解这些底层机制,开发者可以更有效地使用Drizzle ORM进行PostgreSQL数据库操作,避免常见的陷阱。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00