Drizzle ORM 中批量插入数据时GENERATED ALWAYS AS IDENTITY字段的处理
在PostgreSQL数据库开发中,使用Drizzle ORM时遇到的一个常见问题是关于自动生成主键的处理方式。本文将深入分析这个问题及其解决方案。
问题背景
当我们在PostgreSQL中定义表结构时,通常会为表的主键设置自动生成功能。在Drizzle ORM中,有两种常见的方式来实现这一点:
- 使用
serial类型:
id: serial("id").primaryKey()
- 使用
integer类型配合generatedAlwaysAsIdentity():
id: integer("id").primaryKey().generatedAlwaysAsIdentity()
这两种方式在PostgreSQL底层实现上是等价的,都会创建一个自动递增的ID列。然而,在Drizzle ORM的早期版本(0.33.0)中,当尝试批量插入数据时,第二种方式会出现错误。
问题表现
使用generatedAlwaysAsIdentity()方式定义ID列后,如果尝试执行批量插入操作:
await db.insert(test).values([
{ name: "item 1" },
{ name: "item 2" },
{ name: "item 3" },
]);
系统会抛出错误:"cannot insert into column 'id'",提示该列被定义为GENERATED ALWAYS,不能直接插入值。
有趣的是,如果只插入单条记录,这个定义却能正常工作:
await db.insert(test).values({ name: "item 1" });
技术原因
这个问题的根源在于PostgreSQL对GENERATED ALWAYS AS IDENTITY列的处理机制。当批量插入数据时,PostgreSQL默认会尝试为所有列提供值,包括那些定义为GENERATED ALWAYS的列。而对于单条记录插入,Drizzle ORM生成的SQL语句会明确省略ID列。
在PostgreSQL中,要解决这个问题,需要在INSERT语句中使用OVERRIDING SYSTEM VALUE子句,明确告诉数据库系统应该覆盖自动生成的值(尽管在这个案例中我们实际上不需要提供值)。
解决方案
Drizzle ORM团队在0.36.1版本中修复了这个问题。新版本会正确处理批量插入时GENERATED ALWAYS AS IDENTITY列的情况,自动生成适当的SQL语句。
对于开发者来说,现在可以安全地使用以下两种方式定义自动递增主键:
- 传统serial方式(向后兼容):
id: serial("id").primaryKey()
- 标准SQL方式(推荐):
id: integer("id").primaryKey().generatedAlwaysAsIdentity()
两种方式现在都能正确处理单条和批量插入操作。
最佳实践
-
对于新项目,建议使用
generatedAlwaysAsIdentity()方式,因为这是SQL标准的一部分,而serial是PostgreSQL特有的语法。 -
确保使用Drizzle ORM 0.36.1或更高版本,以获得最佳的兼容性和稳定性。
-
在设计表结构时,考虑未来可能的扩展需求,选择最适合项目长期维护的主键生成策略。
通过理解这些底层机制,开发者可以更有效地使用Drizzle ORM进行PostgreSQL数据库操作,避免常见的陷阱。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00