pytorch-dann项目中的DANN域适应训练过程详解
2025-07-10 13:20:10作者:宣利权Counsellor
项目背景与DANN算法简介
pytorch-dann项目实现了一个基于PyTorch的域适应神经网络(Domain Adaptation Neural Network, DANN)框架。DANN是一种解决域适应问题的深度学习方法,它通过在特征空间中学习域不变的特征表示,使得模型能够在源域(有标签数据)和目标域(无标签或少标签数据)上都能表现良好。
训练流程概述
项目中的训练过程主要包含两个核心函数:train_src和train_dann,分别对应不同的训练策略:
- train_src:仅在源域数据上进行训练,不考虑域适应
- train_dann:完整的DANN训练流程,同时优化源域分类和域判别器
网络设置与优化器配置
训练开始前,系统会根据任务类型配置不同的优化策略:
if not params.finetune_flag:
print("training non-office task")
optimizer = optim.SGD(model.parameters(), lr=params.lr, momentum=params.momentum, weight_decay=params.weight_decay)
else:
print("training office task")
parameter_list = [{
"params": model.features.parameters(),
"lr": 0.001
}, {
"params": model.fc.parameters(),
"lr": 0.001
}, {
"params": model.bottleneck.parameters()
}, {
"params": model.classifier.parameters()
}, {
"params": model.discriminator.parameters()
}]
optimizer = optim.SGD(parameter_list, lr=0.01, momentum=0.9)
关键点解析:
- 非Office任务使用统一学习率
- Office任务采用分层学习率策略,不同网络组件使用不同学习率
- 使用SGD优化器,配合动量和权重衰减
核心训练循环
训练过程采用标准的PyTorch训练循环结构,但加入了DANN特有的域适应组件:
-
梯度反转层(Gradient Reversal Layer, GRL):
- 通过动态调整的alpha参数控制梯度反转强度
- alpha计算方式:
alpha = 2. / (1. + np.exp(-10 * p)) - 1
-
学习率调整策略:
- 提供两种学习率调整方案:
adjust_learning_rate和adjust_learning_rate_office - 学习率随训练进度衰减,公式为:
lr = lr_0 / (1 + alpha * p)**beta
- 提供两种学习率调整方案:
-
损失函数组成:
- 源域分类损失:
src_loss_class - 源域域判别损失:
src_loss_domain - 目标域域判别损失:
tgt_loss_domain - 总损失为三者加权和
- 源域分类损失:
训练监控与模型保存
训练过程中实现了完善的监控机制:
-
日志记录:
- 记录学习率变化
- 记录各项损失值
- 记录测试准确率
-
模型评估:
- 定期在源域和目标域测试集上评估模型性能
- 记录分类准确率和域判别准确率
-
模型保存:
- 定期保存中间模型
- 训练结束时保存最终模型
技术亮点与最佳实践
-
动态域适应强度:
- 通过渐进式调整alpha参数,实现训练初期关注分类、后期加强域适应的策略
-
分层学习率:
- 对特征提取器和分类器使用不同学习率,避免破坏预训练特征
-
训练稳定性:
- 使用cudnn.benchmark加速训练
- 采用标准的训练/评估模式切换
-
灵活的配置选项:
- 支持仅源域训练模式(params.src_only_flag)
- 支持不同的学习率调整策略(params.lr_adjust_flag)
使用建议
- 对于小型数据集,建议使用
train_src先进行源域预训练 - 大型跨域任务(如Office数据集)应使用完整DANN训练流程
- 注意调整alpha参数的计算公式以适应不同领域差异程度
- 根据硬件条件合理设置eval_step和save_step频率
通过这套训练框架,研究者可以方便地实现和验证各种域适应场景下的DANN模型性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110