pytorch-dann项目中的DANN域适应训练过程详解
2025-07-10 01:40:38作者:宣利权Counsellor
项目背景与DANN算法简介
pytorch-dann项目实现了一个基于PyTorch的域适应神经网络(Domain Adaptation Neural Network, DANN)框架。DANN是一种解决域适应问题的深度学习方法,它通过在特征空间中学习域不变的特征表示,使得模型能够在源域(有标签数据)和目标域(无标签或少标签数据)上都能表现良好。
训练流程概述
项目中的训练过程主要包含两个核心函数:train_src和train_dann,分别对应不同的训练策略:
- train_src:仅在源域数据上进行训练,不考虑域适应
- train_dann:完整的DANN训练流程,同时优化源域分类和域判别器
网络设置与优化器配置
训练开始前,系统会根据任务类型配置不同的优化策略:
if not params.finetune_flag:
print("training non-office task")
optimizer = optim.SGD(model.parameters(), lr=params.lr, momentum=params.momentum, weight_decay=params.weight_decay)
else:
print("training office task")
parameter_list = [{
"params": model.features.parameters(),
"lr": 0.001
}, {
"params": model.fc.parameters(),
"lr": 0.001
}, {
"params": model.bottleneck.parameters()
}, {
"params": model.classifier.parameters()
}, {
"params": model.discriminator.parameters()
}]
optimizer = optim.SGD(parameter_list, lr=0.01, momentum=0.9)
关键点解析:
- 非Office任务使用统一学习率
- Office任务采用分层学习率策略,不同网络组件使用不同学习率
- 使用SGD优化器,配合动量和权重衰减
核心训练循环
训练过程采用标准的PyTorch训练循环结构,但加入了DANN特有的域适应组件:
-
梯度反转层(Gradient Reversal Layer, GRL):
- 通过动态调整的alpha参数控制梯度反转强度
- alpha计算方式:
alpha = 2. / (1. + np.exp(-10 * p)) - 1
-
学习率调整策略:
- 提供两种学习率调整方案:
adjust_learning_rate和adjust_learning_rate_office - 学习率随训练进度衰减,公式为:
lr = lr_0 / (1 + alpha * p)**beta
- 提供两种学习率调整方案:
-
损失函数组成:
- 源域分类损失:
src_loss_class - 源域域判别损失:
src_loss_domain - 目标域域判别损失:
tgt_loss_domain - 总损失为三者加权和
- 源域分类损失:
训练监控与模型保存
训练过程中实现了完善的监控机制:
-
日志记录:
- 记录学习率变化
- 记录各项损失值
- 记录测试准确率
-
模型评估:
- 定期在源域和目标域测试集上评估模型性能
- 记录分类准确率和域判别准确率
-
模型保存:
- 定期保存中间模型
- 训练结束时保存最终模型
技术亮点与最佳实践
-
动态域适应强度:
- 通过渐进式调整alpha参数,实现训练初期关注分类、后期加强域适应的策略
-
分层学习率:
- 对特征提取器和分类器使用不同学习率,避免破坏预训练特征
-
训练稳定性:
- 使用cudnn.benchmark加速训练
- 采用标准的训练/评估模式切换
-
灵活的配置选项:
- 支持仅源域训练模式(params.src_only_flag)
- 支持不同的学习率调整策略(params.lr_adjust_flag)
使用建议
- 对于小型数据集,建议使用
train_src先进行源域预训练 - 大型跨域任务(如Office数据集)应使用完整DANN训练流程
- 注意调整alpha参数的计算公式以适应不同领域差异程度
- 根据硬件条件合理设置eval_step和save_step频率
通过这套训练框架,研究者可以方便地实现和验证各种域适应场景下的DANN模型性能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
418
3.21 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
683
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
664
React Native鸿蒙化仓库
JavaScript
266
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259