vLLM项目GLM4架构实现问题分析与解决方案
2025-05-01 05:36:57作者:魏献源Searcher
问题背景
在vLLM项目的最新版本中,用户尝试使用vLLM服务GLM4-Z1系列模型(包括9B和32B版本)时遇到了严重的运行错误。这个问题特别出现在使用默认的vLLM实现方式时,而切换到transformers实现则可以正常工作。
错误现象分析
当用户执行以下命令时:
vllm serve THUDM/GLM-Z1-9B-0414 --max-model-len 16384 --enforce-eager
系统会抛出关键错误:
TypeError: linear(): argument 'input' (position 1) must be Tensor, not tuple
这个错误发生在模型的前向传播过程中,具体是在执行线性层计算时。系统期望输入是一个张量(Tensor),但实际接收到的却是一个元组(tuple),导致了类型不匹配的错误。
技术细节解析
通过分析错误堆栈,我们可以追踪到问题的根源:
- 错误起源于
vllm/model_executor/layers/linear.py文件中的线性层计算 - 在GLM4模型的MLP层前向传播过程中,输入数据被错误地处理成了元组形式
- 问题特别出现在使用vLLM原生实现时,而使用transformers实现则不会出现此问题
根本原因
经过深入分析,我们发现这是由于vLLM对GLM4架构的实现存在以下问题:
- 输入处理不一致:vLLM的GLM4实现与原始transformers实现存在输入处理方式的差异
- 类型检查缺失:在数据流传递过程中缺少必要的类型检查和转换
- 架构适配不完整:vLLM对GLM4新版本模型的适配工作尚未完全完成
临时解决方案
目前用户可以采用的临时解决方案包括:
- 使用
--model-impl transformers参数强制使用transformers实现 - 等待vLLM官方发布修复该问题的版本更新
- 手动修改vLLM源码中的GLM4实现部分
长期建议
对于vLLM项目维护者,建议考虑以下改进方向:
- 完善GLM4架构的测试覆盖,特别是对新发布的模型版本
- 增强输入输出的类型检查和自动转换机制
- 建立更严格的模型实现兼容性验证流程
总结
这个问题展示了大型语言模型服务框架在支持新模型架构时可能遇到的挑战。vLLM作为高性能推理框架,需要不断更新以支持各种新兴的模型架构。用户在使用新模型时,应当注意实现方式的兼容性,并灵活选择适合的实现方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178