XTuner与VLMEvalKit在MMBench评估结果差异分析
2025-06-13 00:11:33作者:贡沫苏Truman
问题背景
在XTuner项目实践中,研究人员发现使用XTuner训练的LLaVA-Phi3模型在MMBench-Dev-EN基准测试中出现了评估结果不一致的情况。具体表现为:
- 使用XTuner原生评估工具得到的分数为0.7096
- 使用VLMEvalKit评估工具得到的分数为0.5498
这种显著差异引起了开发者的关注,经过深入分析,发现了问题根源并找到了解决方案。
原因分析
经过技术团队排查,发现导致评估结果不一致的核心原因在于模型配置参数设置不当。具体来说:
在VLMEvalKit的模型配置中,对于经过XTuner微调的LLaVA-Phi3模型,错误地将基础LLM路径设置为原始Phi-3模型('microsoft/Phi-3-mini-4k-instruct'),而非微调后的模型路径。
这种配置错误会导致:
- 评估时使用了未经微调的基础语言模型
- 视觉特征与语言模型的适配性降低
- 模型整体性能表现下降
解决方案
正确的配置方式应该是将llm_path和llava_path都指向微调后的模型路径('xtuner/llava-phi-3-mini-xtuner')。具体修改如下:
'llava-phi-3': partial(
LLaVA_XTuner,
llm_path='xtuner/llava-phi-3-mini-xtuner', # 修改为微调后的模型路径
llava_path='xtuner/llava-phi-3-mini-xtuner',
visual_select_layer=-2,
prompt_template='phi3_chat'),
技术启示
这一问题的解决过程为我们提供了以下重要经验:
-
微调模型评估一致性:对于经过端到端微调的多模态模型,评估时必须确保所有组件都使用微调后的版本。
-
配置参数验证:在使用不同评估工具时,需要仔细检查模型配置参数的对应关系,特别是当模型经过特殊处理(如微调)时。
-
评估工具差异理解:不同评估工具可能有不同的默认假设,了解这些差异有助于正确解释评估结果。
-
模型组件依赖关系:在多模态模型中,视觉编码器和语言模型的协同工作至关重要,任何组件版本不匹配都可能导致性能下降。
总结
XTuner与VLMEvalKit在MMBench评估结果上的差异案例,展示了在多模态模型评估中配置细节的重要性。通过正确设置模型路径,可以确保评估结果真实反映模型的实际性能。这一经验对于其他类似的多模态模型评估工作也具有参考价值,提醒开发者在模型评估过程中要特别注意配置参数的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
845
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120