TorchGeo中GridGeoSampler采样器重复采样问题解析
2025-06-24 15:44:27作者:何举烈Damon
问题背景
在使用TorchGeo进行遥感影像处理时,开发者可能会遇到GridGeoSampler采样器产生重复样本的问题。这种情况通常发生在数据集包含多个单独文件(每个文件对应一个波段)的情况下。当芯片尺寸(chip_size)与步长(stride)相等时,预期采样数量应为(影像宽度/芯片宽度)*(影像高度/芯片高度),但实际采样数量却变成了波段数*(影像宽度/芯片宽度)*(影像高度/芯片高度)。
问题本质
这种现象的根本原因在于TorchGeo数据集的设计理念。TorchGeo的RasterDataset类并不是为单独跟踪每个波段而设计的,而是应该为每个场景只索引一个主波段文件。当使用通配符*.tif匹配所有波段文件时,采样器会将每个波段文件视为独立的影像,从而导致重复采样相同的地理区域。
正确使用方法
要正确使用多波段的单独文件数据集,开发者需要:
- 指定主波段文件的匹配模式(如channel1.tif)
- 使用正则表达式提取波段信息
- 明确列出所有波段标识
示例代码如下:
class CustomRasterDataset(RasterDataset):
filename_glob = 'channel1.tif' # 只匹配主波段文件
filename_regex = r'channel(?P<band>[\d])' # 提取波段号的正则
all_bands = ('1', '2', '3') # 明确列出所有波段
separate_files = True # 标记为多文件存储的波段
设计原理
TorchGeo的这种设计有以下优点:
- 高效索引:只需维护一个主文件的索引,减少内存消耗
- 自动波段组合:通过正则表达式自动匹配和组合相关波段文件
- 一致性保证:确保所有波段来自同一地理区域,避免误匹配
实际应用建议
在实际项目中处理多波段遥感数据时,建议:
- 对于单文件多波段数据,使用默认配置即可
- 对于多文件存储的波段数据,必须按照上述模式配置
- 在创建数据集后,应验证波段组合是否正确
- 考虑添加波段名称映射,提高代码可读性
通过正确理解TorchGeo的数据集设计理念,开发者可以避免采样重复的问题,并充分利用框架提供的自动化波段组合功能,提高遥感数据处理效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210