Supabase-py 项目中向量数据插入问题的解决方案
问题背景
在使用 supabase-py 客户端库与 Supabase 数据库交互时,开发者可能会遇到向量数据插入的问题。具体表现为当尝试将 NumPy 数组格式的向量数据插入到数据库时,系统会抛出"invalid input syntax for type vector"的错误。
问题分析
这个问题的根源在于数据格式的转换过程。当使用 angle_emb 库生成嵌入向量后,直接调用 tolist() 方法会将 NumPy 数组转换为 Python 列表,但保留了原始数组的维度结构。例如,一个形状为 (1, 768) 的数组会被转换为包含单个元素的列表,而这个元素本身又是一个包含 768 个数值的子列表。
Supabase 的向量类型期望的是一个扁平化的数组格式,而不是嵌套的多维数组结构。因此,直接插入这种嵌套列表会导致数据库无法正确解析输入语法。
解决方案
要解决这个问题,我们需要在将向量数据插入数据库前对其进行适当的扁平化处理。以下是推荐的解决方案:
import numpy as np
from angle_emb import AnglE
from supabase import create_client, Client
# 初始化嵌入模型
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
# 初始化Supabase客户端
url = "你的Supabase项目URL"
key = "你的Supabase API密钥"
supabase = create_client(url, key)
# 生成嵌入向量
vec = angle.encode("Hello World", to_numpy=True)
# 关键步骤:将向量扁平化后再转换为列表
flattened_vec = np.array(vec).flatten().tolist()
# 插入数据
response = supabase.table('test_table').insert({"embedding": flatten_vec}).execute()
技术细节
-
NumPy数组扁平化:使用 NumPy 的 flatten() 方法可以将多维数组转换为一维数组,确保向量数据以正确的格式传递给数据库。
-
数据类型转换:在扁平化后调用 tolist() 方法将 NumPy 数组转换为 Python 列表,这是 Supabase 客户端能够处理的格式。
-
向量维度一致性:确保数据库表中定义的向量列维度与实际插入的数据维度一致,避免维度不匹配的问题。
最佳实践
-
数据预处理:在插入前始终检查向量数据的形状和格式,可以使用 print(vec.shape) 来验证。
-
错误处理:实现适当的错误处理机制,捕获并处理可能的数据格式异常。
-
批量插入优化:当需要插入大量向量数据时,考虑使用批量插入操作以提高效率。
-
数据类型验证:在应用层添加数据验证逻辑,确保所有插入的向量数据都符合预期的格式和维度要求。
通过遵循这些实践,开发者可以避免常见的向量数据插入问题,并确保与 Supabase 数据库的交互更加稳定可靠。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00