Argilla项目中的Token分类模型建议添加问题解析
2025-06-13 06:22:04作者:明树来
在Argilla项目的Token分类教程中,用户javilonso遇到了一个关于添加NER模型建议的技术问题。本文将详细解析这个问题及其解决方案,帮助开发者更好地理解Argilla中的Token分类功能实现。
问题背景
在Token分类任务中,Argilla提供了添加模型预测结果作为建议的功能。按照官方教程操作时,用户发现更新后的记录无法正确上传到数据集。错误提示表明在尝试添加模型建议时出现了问题。
问题分析
原始教程代码可能存在的问题包括:
- 记录对象处理方式不够明确
- 建议添加逻辑可能存在异步或批量处理的问题
- 记录更新后的保存方式需要调整
解决方案
经过实践验证,以下代码修改可以正确实现模型建议的添加功能:
records = list(dataset.records())
suggestions = [
predict_gliner(
model=gliner_model, text=sample.fields["text"], labels=labels, threshold=0.7
)
for sample in records
]
for record, suggestion in zip(records, suggestions):
record.suggestions.add(rg.Suggestion(question_name="span_label", value=suggestion))
dataset.records.log(records=records)
关键改进点
- 明确记录获取:使用
list(dataset.records())
确保获取所有记录对象 - 同步处理:采用同步循环方式逐一处理记录和建议
- 批量更新:最后使用
dataset.records.log
方法批量更新所有记录
技术要点
- 记录对象处理:Argilla中的记录对象需要正确实例化和处理
- 建议添加方式:
suggestions.add
方法需要正确的参数格式 - 批量操作:Argilla提供了高效的批量操作接口
最佳实践建议
- 在处理大量记录时,考虑分批处理以避免内存问题
- 添加建议前可以先验证模型预测结果的格式
- 对于生产环境,建议添加适当的错误处理和日志记录
这个解决方案不仅解决了教程中的问题,也为开发者提供了更稳健的Token分类任务实现方式。理解这些技术细节有助于开发者更好地利用Argilla进行NLP任务的数据标注和模型评估。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648