如何安装和使用imbalanced-semi-self项目
目录结构及介绍
该项目主要关注于不平衡数据集上的半监督学习(semi-supervised learning)与自监督学习(self-supervised learning),旨在解决长尾识别问题(long-tailed recognition)。以下是一些关键目录及其功能:
./assets
: 存储一些预定义资产,如模型权重、数据集描述等。./dataset
: 包含用于实验的数据集处理代码,如ImageNet数据集处理。./moco
: 这个目录包含了MoCo相关方法的实现,一个流行的对比学习框架。./models
: 包括了主要使用的深度学习模型定义。./losses
: 定义了各种损失函数以适应类不平衡的问题。./pretrain_moco.py
,./pretrain_rot.py
: 预训练脚本,利用MoCo或旋转预测进行预训练。./train.py
: 训练主脚本,负责模型训练过程。./train_semi.py
: 半监督学习的训练脚本。./gen_pseudolabels.py
: 负责伪标签生成的过程。./utils.py
: 提供了一系列通用工具函数。
启动文件介绍
-
pretrain_moco.py
: 使用MoCo框架进行特征提取器(pretrained feature extractor)的预训练。 -
pretrain_rot.py
: 利用旋转预测(rotate prediction)作为代理任务来进行无标记数据的预训练。 -
train.py
: 主要的训练脚本,加载预训练模型并在此基础上进一步训练以应对特定的长尾分类任务。 -
train_semi.py
: 当存在部分未标记数据时使用的训练脚本,融合有监督和无监督学习策略。
配置文件介绍
尽管这个仓库没有明确列出配置文件,但在实际应用中通常会有类似的文件来管理超参数、数据路径、训练细节等设置。在实践中,这些设置可能通过命令行参数传递给上述脚本,或者在一个独立的JSON或YAML文件中定义。例如,在运行train.py
时,可能会有一个配置文件或命令行选项来指定哪些参数被调整,例如学习率、优化器类型、训练周期等。
由于具体配置的细节没有在仓库中显式提供,建议查阅对应脚本中的帮助信息(通常是通过添加--help
参数到命令行)以了解可用的配置选项,或参考项目文档/注释获取更深入的信息。开发者应将配置文件视为整个工作流的一个重要组成部分,它确保了项目的灵活性与可复现性。
以上指南基于对项目结构的基本理解以及一般机器学习项目的工作流程进行了说明。对于特定的功能实现详情,需要仔细阅读各脚本内的代码和注释。对于新手来说,遵循这样的组织架构不仅有助于理解和执行项目,还能提升开发效率和个人技能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









