EVCC开源充电控制器0.204.0版本发布:新增多项设备支持与功能优化
EVCC是一款开源的电动汽车充电控制器项目,它能够智能管理家庭或商业场所的电动汽车充电过程,与多种充电桩、光伏逆变器、电池储能系统等设备集成,实现基于可再生能源的优化充电。该项目通过模块化设计支持广泛的硬件设备,并提供直观的用户界面用于监控和控制充电过程。
核心功能更新
本次0.204.0版本带来了多项重要更新,主要包括新增设备支持和现有功能优化两大方面。
新增设备支持
-
家庭能源管理系统:新增对Daikin Home Hub和Viessmann系统的支持,使这些品牌的用户能够将暖通空调系统与EVCC集成,实现更全面的家庭能源管理。
-
智能电表与监测设备:增加了IOmeter电能监测仪、Sigenergy能源管理系统以及esphome-dlms-austria智能电表的支持,为用户提供更多电能监测选项。
-
充电设备扩展:新增Wago 879-30xx系列充电控制器和Zaptec Go 2充电桩的兼容性,特别是改进了Zaptec Go 2的相位切换功能。
-
电池系统集成:加入了对Marstek Venus电池系统的支持,使储能系统能够更好地参与充电调度。
功能优化与改进
-
能源流可视化增强:
- 统一了功率显示单位,避免混淆
- 优化了图标和文本的对齐方式
- 改进了活动充电点的显示逻辑
-
充电逻辑优化:
- 减少了车辆唤醒前的等待时间,提高响应速度
- 为SGReady充电协议添加了可选的boost模式功率设置
- 标准化了电池相关参数设置
-
用户界面改进:
- 新增自定义CSS支持,允许用户个性化界面
- 优化了单位显示属性
- 修复了慢速连接情况下的初始化界面显示问题
-
API适配与修复:
- 更新了Polestar车辆的API接口适配
- 修复了HomeAssistant开关插件的崩溃问题
- 改进了eProWallbox的总能量计算准确性
技术细节解析
在电能计量方面,本次更新特别关注了精确性问题。例如修复了IOmeter的Wh到kWh转换错误,确保电能数据准确无误。对于Phoenix EM-ETH电表,现在会正确使用配置中的比例因子进行读数转换。
在充电控制策略上,针对不同品牌的电动汽车进行了专门优化。Fiat和Renault车型现在支持唤醒功能(需要PIN码),这对于需要远程启动充电的场景特别有用。同时,通过减少唤醒前的等待时间,整体充电响应速度得到了提升。
对于使用Sunspec协议的逆变器用户,新版本增加了对分相逆变器的支持,这对于北美等使用分相电力系统的地区尤为重要。
国际化与本地化
本次更新新增了爱沙尼亚语、斯洛伐克语和泰米尔语支持,使EVCC能够服务于更广泛的用户群体。同时修复了会话记录CSV文件的标题翻译问题,提高了多语言环境下的数据导出体验。
升级建议
对于现有用户,特别是使用以下设备的用户建议尽快升级:
- 使用Polestar车辆的用户(API变更)
- 使用RCT逆变器的用户(S0ExternalPowerW变为可配置)
- 使用Renault E-tech车辆的用户(新增唤醒模式)
- 使用SGReady协议的用户(移除了未使用的phases参数)
升级前建议备份现有配置,特别是如果使用了自定义设置。对于生产环境,建议先在测试环境中验证新版本的兼容性。
这个版本体现了EVCC项目对多样化硬件支持的持续投入和对用户体验的细致打磨,为家庭能源管理和电动汽车充电提供了更加完善的开源解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00