Browser-Use项目中使用Ollama模型时工具调用格式问题的解决方案
2025-04-30 03:42:51作者:董灵辛Dennis
在Browser-Use项目中集成Ollama大语言模型时,开发团队遇到了一个关于工具调用(tool calls)格式处理的棘手问题。这个问题会导致模型生成错误的工具调用格式,进而影响整个代理(agent)的工作流程。本文将深入分析问题原因,并提供完整的解决方案。
问题背景
当使用Ollama作为Browser-Use项目的语言模型后端时,特别是使用qwen2.5等模型时,系统在处理工具调用时会出现格式错误。具体表现为:
- 历史消息中存储的工具调用被错误地保存为普通AI消息
- 模型生成的工具调用缺少必要的格式标记
- 后续解析步骤无法正确识别工具调用内容
根本原因分析
问题的核心在于消息管理器(message_manager)中的add_model_output方法实现不当。当前实现将模型输出直接以JSON格式转储为普通消息内容,而不是按照LangChain要求的工具调用格式存储。
错误实现如下:
def add_model_output(self, model_output: AgentOutput) -> None:
content = model_output.model_dump_json(exclude_unset=True)
msg = AIMessage(content=content)
self._add_message_with_tokens(msg)
这种实现会导致历史消息中出现类似{"function": {"parameters": [...]}}的内容,而不是正确的<tool_call>...</tool_call>格式。
解决方案
1. 修正工具调用存储格式
正确的做法是将工具调用内容存储在AIMessage的tool_calls属性中,而不是直接作为消息内容。修改后的实现如下:
def add_model_output(self, model_output: AgentOutput) -> None:
content = model_output.model_dump_json(exclude_unset=True)
msg = AIMessage(content="", tool_calls=[
{'name': 'AgentOutput', 'args': json.loads(content), 'id': '', 'type': 'tool_call'}
])
self._add_message_with_tokens(msg)
这种修改确保了工具调用以LangChain能够正确处理的格式存储。
2. 添加示例工具调用
为了帮助模型(特别是较小的7B参数模型)更好地理解预期的工具调用格式,建议在初始化消息历史时添加一个示例工具调用:
# 在系统消息和任务消息之间添加示例
wait_for_human = AIMessage(
content='',
tool_calls=[{
'name': 'AgentOutput',
'args': {
'current_state': {
'evaluation_previous_goal': 'Unknown - No previous actions to evaluate.',
'memory': '',
'next_goal': "Obtain task from user"
},
'action': []
},
'id': '',
'type': 'tool_call'
}]
)
3. Ollama配置优化
使用Ollama时,还需要注意以下配置要点:
- 确保使用最新版本的Ollama
- 设置足够大的上下文窗口:
llm = ChatOllama(model='qwen2.5:latest', num_ctx=128000) - 对于某些模型,可能需要使用OpenAI兼容的API端点:
llm = ChatOpenAI( model='qwen2.5:latest', api_key='ollama', base_url='http://127.0.0.1:11434/v1', )
实施效果
经过上述修改后:
- 模型能够正确生成工具调用格式
- 历史消息保持正确的格式,避免模型学习错误的模式
- 较小的7B参数模型也能稳定工作
- 整个代理流程更加可靠
最佳实践建议
- 对于Browser-Use项目,推荐使用granite3.1-dense:8b或qwen2.5系列模型
- 始终检查模型返回的原始输出和解析结果
- 在开发过程中,可以打印消息历史以验证格式是否正确
- 对于新模型,建议先进行小规模测试验证工具调用功能
通过以上解决方案,Browser-Use项目可以更稳定地与Ollama模型集成,充分发挥大语言模型在浏览器自动化任务中的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248