Django-Mailgun 技术文档
1. 安装指南
首先,确保你已经安装了 Django。接下来,你可以使用 pip 命令安装 django-mailgun。
pip install django-mailgun
在安装完 django-mailgun 后,你需要在项目的 settings.py 文件中配置一些参数。
EMAIL_BACKEND = 'django_mailgun.MailgunBackend'
MAILGUN_ACCESS_KEY = 'ACCESS-KEY'
MAILGUN_SERVER_NAME = 'SERVER-NAME'
将 ACCESS-KEY 替换为你的 Mailgun 账户详情中的 "API-KEY",将 SERVER-NAME 替换为你的 "API Base URL" 的最后一部分(例如:https://api.mailgun.net/v3/<your_server_name>)。
2. 项目使用说明
在配置好 django-mailgun 后,你可以像平时一样使用 django.core.mail.send_mail 方法发送邮件,django-mailgun 会自动将邮件发送到 Mailgun。
from django.core.mail import send_mail
send_mail('Subject here', 'Here is the message.', 'from@example.com', ['to@example.com'], fail_silently=False)
3. 项目API使用文档
django-mailgun 支持一些额外的特性,例如:
发送用户特定数据
如果你想利用 Mailgun 的批量发送功能,你需要在 EmailMessage 的 extra_headers 属性中添加一个有效的 JSON 字符串。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for %recipient.first_name%', 'admin@example.com', ['joe@example.com', 'jane@example.com'])
email.extra_headers['recipient_variables'] = '{"joe@example.com":{"first_name":"Joe"}, "jane@example.com":{"first_name":"Jane"}}'
email.send()
分析和其他追踪功能
Mailgun 允许你追踪关于你的电子邮件的某些事件。你可以在 API 调用中传递这些选项(更多信息请查看 Mailgun 文档)。如果你在 extra_headers 中添加任何 SMTP 选项,django-mailgun 会将这些值映射到相应的 API 参数。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for Joe', 'admin@example.com', ['joe@example.com'])
email.extra_headers['X-Mailgun-Tag'] = ['Tag 1', 'Tag 2']
email.send()
附加数据到消息
你也可以通过 X-Mailgun-Variables 头向邮件附加自定义数据。数据应该格式化为 JSON,并将包含在任何与该电子邮件相关的 webhook 事件中。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for Joe', 'admin@example.com', ['joe@example.com'])
email.extra_headers['X-Mailgun-Variables'] = {'my-id': 'email_id', 'my-variable':'variable'}
email.send()
请注意,django-mailgun 不会验证你提供的数据是否符合 Mailgun API 的要求,它只是简单地将你提供的值映射到 API。
4. 项目安装方式
请参考上文“安装指南”部分。
以上是关于 django-mailgun 的基本介绍和使用方法。如果你有任何问题或需要进一步的澄清,请随时查阅 Mailgun 的官方文档。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00