Django-Mailgun 技术文档
1. 安装指南
首先,确保你已经安装了 Django。接下来,你可以使用 pip 命令安装 django-mailgun。
pip install django-mailgun
在安装完 django-mailgun 后,你需要在项目的 settings.py
文件中配置一些参数。
EMAIL_BACKEND = 'django_mailgun.MailgunBackend'
MAILGUN_ACCESS_KEY = 'ACCESS-KEY'
MAILGUN_SERVER_NAME = 'SERVER-NAME'
将 ACCESS-KEY
替换为你的 Mailgun 账户详情中的 "API-KEY",将 SERVER-NAME
替换为你的 "API Base URL" 的最后一部分(例如:https://api.mailgun.net/v3/<your_server_name>
)。
2. 项目使用说明
在配置好 django-mailgun 后,你可以像平时一样使用 django.core.mail.send_mail
方法发送邮件,django-mailgun 会自动将邮件发送到 Mailgun。
from django.core.mail import send_mail
send_mail('Subject here', 'Here is the message.', 'from@example.com', ['to@example.com'], fail_silently=False)
3. 项目API使用文档
django-mailgun 支持一些额外的特性,例如:
发送用户特定数据
如果你想利用 Mailgun 的批量发送功能,你需要在 EmailMessage
的 extra_headers
属性中添加一个有效的 JSON 字符串。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for %recipient.first_name%', 'admin@example.com', ['joe@example.com', 'jane@example.com'])
email.extra_headers['recipient_variables'] = '{"joe@example.com":{"first_name":"Joe"}, "jane@example.com":{"first_name":"Jane"}}'
email.send()
分析和其他追踪功能
Mailgun 允许你追踪关于你的电子邮件的某些事件。你可以在 API 调用中传递这些选项(更多信息请查看 Mailgun 文档)。如果你在 extra_headers
中添加任何 SMTP 选项,django-mailgun 会将这些值映射到相应的 API 参数。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for Joe', 'admin@example.com', ['joe@example.com'])
email.extra_headers['X-Mailgun-Tag'] = ['Tag 1', 'Tag 2']
email.send()
附加数据到消息
你也可以通过 X-Mailgun-Variables
头向邮件附加自定义数据。数据应该格式化为 JSON,并将包含在任何与该电子邮件相关的 webhook 事件中。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for Joe', 'admin@example.com', ['joe@example.com'])
email.extra_headers['X-Mailgun-Variables'] = {'my-id': 'email_id', 'my-variable':'variable'}
email.send()
请注意,django-mailgun 不会验证你提供的数据是否符合 Mailgun API 的要求,它只是简单地将你提供的值映射到 API。
4. 项目安装方式
请参考上文“安装指南”部分。
以上是关于 django-mailgun 的基本介绍和使用方法。如果你有任何问题或需要进一步的澄清,请随时查阅 Mailgun 的官方文档。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









