Django-Mailgun 技术文档
1. 安装指南
首先,确保你已经安装了 Django。接下来,你可以使用 pip 命令安装 django-mailgun。
pip install django-mailgun
在安装完 django-mailgun 后,你需要在项目的 settings.py 文件中配置一些参数。
EMAIL_BACKEND = 'django_mailgun.MailgunBackend'
MAILGUN_ACCESS_KEY = 'ACCESS-KEY'
MAILGUN_SERVER_NAME = 'SERVER-NAME'
将 ACCESS-KEY 替换为你的 Mailgun 账户详情中的 "API-KEY",将 SERVER-NAME 替换为你的 "API Base URL" 的最后一部分(例如:https://api.mailgun.net/v3/<your_server_name>)。
2. 项目使用说明
在配置好 django-mailgun 后,你可以像平时一样使用 django.core.mail.send_mail 方法发送邮件,django-mailgun 会自动将邮件发送到 Mailgun。
from django.core.mail import send_mail
send_mail('Subject here', 'Here is the message.', 'from@example.com', ['to@example.com'], fail_silently=False)
3. 项目API使用文档
django-mailgun 支持一些额外的特性,例如:
发送用户特定数据
如果你想利用 Mailgun 的批量发送功能,你需要在 EmailMessage 的 extra_headers 属性中添加一个有效的 JSON 字符串。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for %recipient.first_name%', 'admin@example.com', ['joe@example.com', 'jane@example.com'])
email.extra_headers['recipient_variables'] = '{"joe@example.com":{"first_name":"Joe"}, "jane@example.com":{"first_name":"Jane"}}'
email.send()
分析和其他追踪功能
Mailgun 允许你追踪关于你的电子邮件的某些事件。你可以在 API 调用中传递这些选项(更多信息请查看 Mailgun 文档)。如果你在 extra_headers 中添加任何 SMTP 选项,django-mailgun 会将这些值映射到相应的 API 参数。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for Joe', 'admin@example.com', ['joe@example.com'])
email.extra_headers['X-Mailgun-Tag'] = ['Tag 1', 'Tag 2']
email.send()
附加数据到消息
你也可以通过 X-Mailgun-Variables 头向邮件附加自定义数据。数据应该格式化为 JSON,并将包含在任何与该电子邮件相关的 webhook 事件中。
from django.core.mail import EmailMessage
email = EmailMessage('Hi!', 'Cool message for Joe', 'admin@example.com', ['joe@example.com'])
email.extra_headers['X-Mailgun-Variables'] = {'my-id': 'email_id', 'my-variable':'variable'}
email.send()
请注意,django-mailgun 不会验证你提供的数据是否符合 Mailgun API 的要求,它只是简单地将你提供的值映射到 API。
4. 项目安装方式
请参考上文“安装指南”部分。
以上是关于 django-mailgun 的基本介绍和使用方法。如果你有任何问题或需要进一步的澄清,请随时查阅 Mailgun 的官方文档。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00