Yitter IdGenerator多线程环境下ID重复问题分析与解决方案
问题背景
在使用Yitter IdGenerator生成分布式ID时,开发者CupidStar遇到了一个典型的多线程并发问题:在高并发场景下生成的ID出现了重复现象。具体表现为200并发时很容易复现,100多并发时偶尔复现。这个问题直接关系到分布式系统的数据一致性和唯一性保证,值得深入分析。
问题复现
开发者最初使用的测试代码如下:
static {
IdGeneratorOptions options = new IdGeneratorOptions((short)0);
YitIdHelper.setIdGenerator(options);
}
public static long getId(){
return YitIdHelper.nextId();
}
@Test
public void idTest() throws InterruptedException {
HashSet<Long> set = new HashSet<>();
int count = 50;
CountDownLatch countDownLatch = new CountDownLatch(count);
for (int i = 0; i < count; i++) {
int finalI = i;
new Thread(()->{
for (int j = 0; j < 10; j++) {
set.add(IdUtil.getId());
}
System.out.println("ok"+ finalI);
countDownLatch.countDown();
}).start();
}
countDownLatch.await();
System.out.println(set.size());
}
这段代码创建了50个线程,每个线程生成10个ID,理论上应该生成500个唯一ID,但实际测试中出现了重复现象。
问题本质
经过分析,问题并不在于Yitter IdGenerator本身,而是测试代码中存在两个关键问题:
-
线程安全问题:使用了非线程安全的HashSet来收集生成的ID,在多线程环境下,HashSet的内部结构可能会被并发修改导致数据丢失或重复。
-
测试方法不当:没有正确评估ID生成器的并发性能,测试用例设计存在缺陷。
正确解决方案
开发者最终找到了正确的测试方法,使用线程安全的ConcurrentSkipListSet替代HashSet:
public static void main(String[] args) throws InterruptedException {
ConcurrentSkipListSet<Long> set = new ConcurrentSkipListSet<>();
int count = 10;
CountDownLatch countDownLatch = new CountDownLatch(count);
IdUtil.getId();
System.out.println("start");
long start = System.currentTimeMillis();
for (int i = 0; i < count; i++) {
new Thread(()->{
for (int j = 0; j < 2000; j++) {
set.add(IdUtil.getId());
}
countDownLatch.countDown();
}).start();
}
countDownLatch.await();
System.out.println(System.currentTimeMillis() - start);
System.out.println(set.size());
}
这个改进后的测试用例:
- 使用线程安全的ConcurrentSkipListSet来收集ID
- 增加了测试规模(10个线程,每个生成2000个ID)
- 添加了性能统计功能
- 移除了不必要的打印语句
深入理解
为什么HashSet在多线程下会出问题
HashSet内部基于HashMap实现,当多个线程同时向HashSet添加元素时,可能会发生:
- 扩容时的数据丢失
- 链表转红黑树时的结构破坏
- 哈希冲突处理不当导致的元素覆盖
ConcurrentSkipListSet的优势
ConcurrentSkipListSet是基于跳表实现的线程安全集合:
- 无锁算法实现高并发
- 天然有序,便于后续分析
- 写操作不会阻塞读操作
- 适合高并发场景下的数据收集
最佳实践建议
-
测试环境搭建:测试分布式ID生成器时,务必使用线程安全的数据结构来收集结果。
-
性能考量:除了验证唯一性,还应该关注ID生成的速度和吞吐量,特别是在高并发场景下。
-
异常处理:在实际应用中,应该对ID生成过程添加适当的异常处理和重试机制。
-
监控指标:在生产环境中,建议监控ID生成的成功率、耗时等关键指标。
结论
通过这个案例,我们学习到在测试高并发组件时,测试方法本身也需要考虑线程安全性。Yitter IdGenerator作为一款分布式ID生成器,其本身在多线程环境下是安全的,但测试代码如果不当,可能会得出错误的结论。正确使用线程安全的数据结构是验证分布式组件功能的关键前提。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00