Yitter IdGenerator多线程环境下ID重复问题分析与解决方案
问题背景
在使用Yitter IdGenerator生成分布式ID时,开发者CupidStar遇到了一个典型的多线程并发问题:在高并发场景下生成的ID出现了重复现象。具体表现为200并发时很容易复现,100多并发时偶尔复现。这个问题直接关系到分布式系统的数据一致性和唯一性保证,值得深入分析。
问题复现
开发者最初使用的测试代码如下:
static {
IdGeneratorOptions options = new IdGeneratorOptions((short)0);
YitIdHelper.setIdGenerator(options);
}
public static long getId(){
return YitIdHelper.nextId();
}
@Test
public void idTest() throws InterruptedException {
HashSet<Long> set = new HashSet<>();
int count = 50;
CountDownLatch countDownLatch = new CountDownLatch(count);
for (int i = 0; i < count; i++) {
int finalI = i;
new Thread(()->{
for (int j = 0; j < 10; j++) {
set.add(IdUtil.getId());
}
System.out.println("ok"+ finalI);
countDownLatch.countDown();
}).start();
}
countDownLatch.await();
System.out.println(set.size());
}
这段代码创建了50个线程,每个线程生成10个ID,理论上应该生成500个唯一ID,但实际测试中出现了重复现象。
问题本质
经过分析,问题并不在于Yitter IdGenerator本身,而是测试代码中存在两个关键问题:
-
线程安全问题:使用了非线程安全的HashSet来收集生成的ID,在多线程环境下,HashSet的内部结构可能会被并发修改导致数据丢失或重复。
-
测试方法不当:没有正确评估ID生成器的并发性能,测试用例设计存在缺陷。
正确解决方案
开发者最终找到了正确的测试方法,使用线程安全的ConcurrentSkipListSet替代HashSet:
public static void main(String[] args) throws InterruptedException {
ConcurrentSkipListSet<Long> set = new ConcurrentSkipListSet<>();
int count = 10;
CountDownLatch countDownLatch = new CountDownLatch(count);
IdUtil.getId();
System.out.println("start");
long start = System.currentTimeMillis();
for (int i = 0; i < count; i++) {
new Thread(()->{
for (int j = 0; j < 2000; j++) {
set.add(IdUtil.getId());
}
countDownLatch.countDown();
}).start();
}
countDownLatch.await();
System.out.println(System.currentTimeMillis() - start);
System.out.println(set.size());
}
这个改进后的测试用例:
- 使用线程安全的ConcurrentSkipListSet来收集ID
- 增加了测试规模(10个线程,每个生成2000个ID)
- 添加了性能统计功能
- 移除了不必要的打印语句
深入理解
为什么HashSet在多线程下会出问题
HashSet内部基于HashMap实现,当多个线程同时向HashSet添加元素时,可能会发生:
- 扩容时的数据丢失
- 链表转红黑树时的结构破坏
- 哈希冲突处理不当导致的元素覆盖
ConcurrentSkipListSet的优势
ConcurrentSkipListSet是基于跳表实现的线程安全集合:
- 无锁算法实现高并发
- 天然有序,便于后续分析
- 写操作不会阻塞读操作
- 适合高并发场景下的数据收集
最佳实践建议
-
测试环境搭建:测试分布式ID生成器时,务必使用线程安全的数据结构来收集结果。
-
性能考量:除了验证唯一性,还应该关注ID生成的速度和吞吐量,特别是在高并发场景下。
-
异常处理:在实际应用中,应该对ID生成过程添加适当的异常处理和重试机制。
-
监控指标:在生产环境中,建议监控ID生成的成功率、耗时等关键指标。
结论
通过这个案例,我们学习到在测试高并发组件时,测试方法本身也需要考虑线程安全性。Yitter IdGenerator作为一款分布式ID生成器,其本身在多线程环境下是安全的,但测试代码如果不当,可能会得出错误的结论。正确使用线程安全的数据结构是验证分布式组件功能的关键前提。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00