Apache Arrow C++ 新增百分位排名函数实现解析
2025-05-15 04:32:54作者:尤辰城Agatha
在数据处理和分析领域,百分位排名(Percentile Rank)是一个非常重要的统计指标。Apache Arrow C++库近期新增了这一功能的实现,本文将深入解析这一功能的实现细节和应用场景。
百分位排名概念
百分位排名是一种统计方法,用于表示某个特定值在数据集中所处的相对位置。它的核心思想是将数据集中的每个值映射到一个0到1之间的数值(或者0%到100%),表示有多少比例的数据点小于或等于当前值。
在Apache Arrow的实现中,采用了公开资料中定义的百分位排名公式:
PR = (L + 0.5 × E) / N × 100
其中:
- L是小于给定分数的值的数量
- E是等于给定分数的值的数量
- N是总样本数量
技术实现特点
Apache Arrow C++实现的百分位排名函数具有以下技术特点:
- 灵活的排序选项:支持通过SortKey指定排序方式,包括升序或降序排列
- 空值处理策略:提供了NullPlacement选项,可以控制空值出现在排序结果的开始还是结束位置
- 可调输出范围:通过factor参数可以灵活调整输出范围,1.0表示(0,1)区间,100.0表示百分比形式
与现有功能的对比
Apache Arrow原本已经提供了rank函数,新增的percentile_rank函数在功能上有所不同:
- rank函数返回的是原始排名(如1,2,3...)
- percentile_rank函数返回的是标准化后的相对位置(0到1之间或0%到100%)
实现细节
在底层实现上,百分位排名函数首先对输入数据进行排序,然后根据排序结果计算每个元素的百分位排名。对于存在重复值的情况,函数会正确处理并列排名的情况,确保结果的准确性。
函数还考虑了大数据集的处理效率,采用了优化的排序算法和并行计算策略,确保在大规模数据集上也能保持高性能。
应用场景
百分位排名函数在数据分析中有广泛的应用:
- 成绩分析:可以快速确定学生在班级中的相对位置
- 性能基准测试:比较系统性能指标在历史数据中的位置
- 异常检测:识别处于极端百分位的异常值
- 数据标准化:将原始数据转换为统一的相对位置指标
总结
Apache Arrow C++新增的百分位排名函数为数据分析提供了又一个强大的工具。它的实现既考虑了数学定义的准确性,又兼顾了实际应用中的灵活性和性能需求。这一功能的加入使得Arrow在统计计算领域的能力更加全面,能够更好地满足各种复杂数据分析场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134