Honggfuzz项目在glibc 2.38+环境下的编译问题解析
在Linux系统开发中,安全工具Honggfuzz因其高效的模糊测试能力而广受欢迎。然而,随着glibc 2.38版本的发布,开发者们遇到了一个棘手的编译问题。本文将深入分析这一问题的成因,并提供专业的解决方案。
问题现象
当使用glibc 2.38及以上版本编译Honggfuzz时,编译过程会因字符串函数冲突而失败。具体表现为编译器报出多个错误,指出strcpy、strcat等字符串函数同时以常规形式和别名属性被定义。这些错误源自glibc的bits/string_fortified.h头文件。
根本原因分析
经过深入调查,发现问题根源在于glibc 2.38对字符串函数的安全强化机制发生了变化。新版本的glibc默认启用了FORTIFY_SOURCE保护机制,这与Honggfuzz的编译要求产生了冲突。
Honggfuzz作为一个安全测试工具,需要直接访问底层内存和系统调用,因此它明确禁用了FORTIFY_SOURCE保护(通过-D_FORTIFY_SOURCE=0标志)。然而在某些Linux发行版(如NixOS)中,编译器默认配置会覆盖这一设置,导致保护机制被重新启用。
解决方案
要解决这一问题,需要确保在编译Honggfuzz时完全禁用FORTIFY_SOURCE保护。具体方法包括:
-
在Makefile中明确设置:
-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=0 -
对于使用NixOS等特殊发行版的用户,需要检查系统级的编译器配置,确保不会覆盖项目本地的安全设置。
-
在构建环境中,可以通过以下命令验证FORTIFY_SOURCE是否被正确禁用:
gcc -dM -E - < /dev/null | grep FORTIFY
技术背景
FORTIFY_SOURCE是glibc提供的一种安全增强机制,它通过在编译时检查缓冲区操作来防止常见的缓冲区溢出漏洞。然而,对于像Honggfuzz这样的底层安全工具,这种保护机制反而会干扰其正常工作,因此需要特别禁用。
最佳实践建议
- 在构建安全敏感工具时,应仔细检查编译器的安全相关标志
- 对于跨发行版的项目,建议在构建脚本中加入环境检查逻辑
- 当遇到类似函数重定义错误时,应考虑安全机制冲突的可能性
- 定期检查项目依赖库的版本兼容性,特别是glibc等核心库
通过理解并正确配置这些底层安全机制,开发者可以确保Honggfuzz等工具在各种环境下都能正常构建和运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00