Cashew项目中的类别删除性能问题解析
2025-06-29 08:57:56作者:余洋婵Anita
在开源财务管理应用Cashew中,开发团队发现了一个有趣的性能现象:删除类别(Category)的操作耗时与类别在列表中的位置呈现正相关关系。具体表现为,删除列表末尾的类别速度较快,而删除列表起始位置的类别则需要更长时间。这一现象背后涉及数据库设计和排序算法的技术考量。
技术背景
Cashew采用SQLite作为底层数据库存储方案。由于SQL标准本身不包含对记录显示顺序的强制保证,应用需要自行维护一个排序字段(通常命名为order或position)来实现用户自定义排序功能。这种实现方式是关系型数据库处理有序数据的常见模式。
问题本质
当用户删除某个类别时,系统需要执行两个关键操作:
- 删除目标记录本身
- 调整受影响记录的排序值
以包含5个类别的列表为例(排序值为1-5):
- 删除排序5的类别:只需删除单条记录
- 删除排序1的类别:需要删除目标记录,并将原排序2-5的记录全部更新为1-4
这种差异导致删除操作的时间复杂度从O(1)变为O(n),其中n表示需要更新的记录数量。
设计权衡
Cashew团队在设计时做了以下技术决策:
- 倒序存储:将新添加的类别默认放在列表顶部(排序值较小的一端),这样在频繁添加推荐标题时,可以避免大规模更新已有记录的排序值
- 批量写入:虽然删除操作可能涉及多条记录更新,但通过批量写入优化减少了数据库I/O次数
- 读写优化侧重:考虑到类别删除是低频操作,而列表读取是高频操作,优先保证读取性能
潜在优化方案
虽然当前实现已经考虑了性能平衡,但从技术角度仍有优化空间:
- 分离排序存储:将排序信息存储在单独的配置表中,更新时只需修改单条记录
- 稀疏排序值:采用间隔编号(如10,20,30...),为新条目插入预留空间
- 链表式存储:每个记录存储前后记录的ID,但会增加查询复杂度
实践建议
对于开发者实现类似功能时,建议:
- 明确操作频率特征,合理分配优化资源
- 在数据库设计中考虑排序操作的代价
- 对于用户自定义排序场景,推荐采用倒序设计减少高频操作的开销
- 在UI层面对可能耗时的操作添加加载状态提示
Cashew的这个案例很好地展示了在实际开发中如何平衡功能需求与性能考量,特别是在处理用户自定义排序这种常见但容易忽视性能陷阱的场景时,需要做出的技术决策。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0134
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692