FATE项目模型部署阶段数据获取机制解析
2025-06-05 13:53:33作者:齐添朝
在联邦学习框架FATE中,模型部署与推理阶段的数据交互是一个关键环节。本文将深入分析FATE项目中模型服务化(Serving)阶段的数据获取机制,特别是当涉及多方参与时的数据交互流程。
模型服务化架构概述
FATE的模型服务化架构采用客户端-服务端模式,其中:
- Guest方:通常作为推理请求的发起方
- Host方:提供部分特征数据,参与联合推理
- Serving服务:负责协调各参与方的数据交互和模型计算
数据获取的核心机制
在模型推理过程中,Host方获取数据主要通过以下两种方式:
1. 本地特征数据查询
Host方需要实现自定义的Adapter组件,该组件负责:
- 接收来自Guest方的特征ID
- 根据ID查询本地特征存储系统
- 返回对应的特征值
Adapter的实现需要与Host方的数据存储系统集成,可以是数据库、数据仓库或任何其他形式的特征存储。
2. 实时特征传递
在某些场景下,特征数据可以直接通过请求体传递:
{
"featureData": {
"g2": 1.88669
},
"sendToRemoteFeatureData": {
"id": "00151788df5fc50f0d6be8bd709a7eca"
}
}
其中featureData包含直接传递的特征,而sendToRemoteFeatureData中的ID用于Host方查询额外特征。
结果验证与风险控制
在联邦推理场景中,结果验证尤为重要。FATE的返回结果包含多个验证维度:
{
"retcode": 0,
"data": {
"score": 0.7038398080525485,
"modelId": "guest#9999#...",
"modelVersion": "202402221632287164860"
}
}
开发者需要注意:
- retcode机制:虽然主要表示请求处理状态,但建议实现额外的结果校验逻辑
- 模型标识:包含完整的模型路径信息,可用于结果溯源
- 时间戳:确保推理结果的时效性
最佳实践建议
- Host方实现:必须完整实现Adapter接口,确保能正确处理特征ID查询
- 错误处理:在Adapter中实现完善的错误处理机制,对无法找到的特征返回明确错误
- 结果校验:在客户端添加结果校验逻辑,不单纯依赖retcode
- 日志记录:详细记录推理过程中的数据交互,便于问题排查
- 性能优化:对Host方的特征查询进行缓存等优化,提高推理效率
通过以上机制,FATE实现了安全可靠的联邦模型服务化,确保了在多参与方场景下模型推理的正确性和数据隐私性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217