tilemaker项目中使用--store参数时解决mmap错误的方法
在使用tilemaker这款开源地图切片工具处理大型OSM数据时,开发者可能会遇到一个与内存映射文件相关的错误。本文将详细分析这个问题的成因,并提供有效的解决方案。
问题现象
当用户使用tilemaker的--store参数处理大型OSM数据文件(如planet.osm.pbf)时,可能会遇到以下错误信息:
terminate called after throwing an instance of 'std::runtime_error'
what(): Failed to open mmap file
Command terminated by signal 6
通过strace工具分析可以发现,进程实际上是因为"too many open files"(打开文件过多)而被终止的。
问题根源
这个问题主要与Linux系统的文件描述符限制有关。tilemaker在处理大型数据集时,特别是使用--store参数将临时数据存储在磁盘上时,会创建大量内存映射文件(mmap)。在高性能服务器上(如拥有128个CPU线程的机器),tilemaker可能会启动多个工作线程并行处理数据,每个线程都需要打开多个临时文件。
默认情况下,Linux系统对单个进程可打开的文件描述符数量限制为1024。当tilemaker尝试打开的文件数量超过这个限制时,系统就会拒绝新的文件打开请求,导致mmap操作失败。
解决方案
解决这个问题的关键在于提高系统的文件描述符限制。具体步骤如下:
-
首先检查当前的文件描述符限制:
ulimit -a在输出中查找"open files"一项,确认当前限制值。
-
如果限制值较低(如默认的1024),可以通过以下命令临时提高限制:
ulimit -n 10000这个命令将当前会话的文件描述符限制提高到10000。
-
然后重新运行tilemaker命令:
tilemaker --config config.json --process process.lua --output planet.mbtiles --store /nvme/tilemaker.tmp --compact planet.osm.pbf
注意事项
-
使用
ulimit -n设置的修改只在当前会话有效。如果需要永久修改,可以编辑/etc/security/limits.conf文件。 -
设置的值应根据实际需求确定。对于处理特别大的数据集或在高并发环境下,可能需要设置更高的值。
-
在服务器环境中,特别是当多个用户可能同时运行资源密集型任务时,系统管理员应该全局考虑文件描述符限制的设置。
-
除了文件描述符限制外,处理大型数据集时还应确保临时存储目录(如示例中的/nvme/tilemaker.tmp)有足够的磁盘空间。
通过以上调整,tilemaker应该能够顺利处理大型OSM数据集,而不会遇到mmap文件打开失败的问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00