Querydsl 技术文档
1. 安装指南
1.1 使用 Maven 安装
Querydsl 可以通过 Maven 进行安装。首先,在你的 pom.xml 文件中添加 Querydsl 的依赖项。以下是一个示例:
<dependency>
<groupId>com.querydsl</groupId>
<artifactId>querydsl-core</artifactId>
<version>5.0.0</version>
</dependency>
根据你使用的后端(如 JPA、SQL、MongoDB 等),你还需要添加相应的依赖项。例如,如果你使用 JPA,可以添加以下依赖:
<dependency>
<groupId>com.querydsl</groupId>
<artifactId>querydsl-jpa</artifactId>
<version>5.0.0</version>
</dependency>
1.2 手动构建
如果你需要手动构建 Querydsl,可以使用以下命令:
mvn -Pquickbuild,{projectname} clean install
其中 {projectname} 是 Maven 配置文件的名称,例如 jpa、sql、mongodb 等。如果你想构建所有模块,可以使用 all。
1.3 Docker Compose 设置
Querydsl 提供了 Docker Compose 设置,用于运行测试。你需要先安装 Docker 和 docker-compose。然后,使用以下命令启动数据库容器:
docker-compose up -d
这将启动 Oracle、PostgreSQL、MySQL 和 Cubrid 数据库,并将它们的默认端口映射到主机。
2. 项目的使用说明
2.1 查询 JPA
Querydsl 支持通过类型安全的方式查询 JPA。你可以参考 Querying JPA 教程来开始使用。
2.2 查询 SQL
Querydsl 也支持查询 SQL 数据库。你可以参考 Querying SQL 教程来了解如何使用。
2.3 查询 MongoDB
如果你使用 MongoDB,可以参考 Querying Mongodb 教程。
2.4 查询 Lucene
Querydsl 还支持查询 Lucene 索引。你可以参考 Querying Lucene 教程。
2.5 查询集合
Querydsl 可以查询 Java 集合。你可以参考 Querying Collections 教程。
2.6 查询 JDO
如果你使用 JDO,可以参考 Querying JDO 教程。
3. 项目 API 使用文档
Querydsl 提供了一个流畅的 API,用于构建类型安全的查询。以下是一些常用的 API 示例:
3.1 查询 JPA
QCustomer customer = QCustomer.customer;
JPAQuery<?> query = new JPAQuery<Void>(entityManager);
Customer bob = query.select(customer)
.from(customer)
.where(customer.firstName.eq("Bob"))
.fetchOne();
3.2 查询 SQL
QEmployee employee = QEmployee.employee;
SQLQuery<?> query = new SQLQuery<Void>(connection, SQLTemplates.DEFAULT);
List<Employee> employees = query.select(employee)
.from(employee)
.where(employee.department.eq("IT"))
.fetch();
3.3 查询 MongoDB
QUser user = QUser.user;
MongoQuery<?> query = new MongoQuery<Void>(mongoClient, DBCollection.class);
List<User> users = query.select(user)
.from(user)
.where(user.age.gt(20))
.fetch();
4. 项目安装方式
Querydsl 可以通过 Maven 或手动构建进行安装。Maven 是最常用的安装方式,具体步骤请参考 安装指南。
如果你需要手动构建,可以使用 Maven 命令进行构建,具体步骤请参考 手动构建。
此外,Querydsl 还提供了 Docker Compose 设置,用于运行测试。你可以通过 Docker 启动多个数据库容器,具体步骤请参考 Docker Compose 设置。
通过以上文档,你应该能够顺利安装和使用 Querydsl 项目。如果有任何问题,可以参考项目的 讨论区 或在 StackOverflow 上提问。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00