ArguFlow项目中实现多场景AI提示分离的技术方案
2025-07-04 02:02:04作者:咎竹峻Karen
在AI对话系统开发过程中,针对不同场景定制化响应是一个常见需求。ArguFlow项目近期针对其文档搜索功能提出了一个重要改进需求——为全局组件和产品详情页(PDP)分别设置独立的System提示和RAG(检索增强生成)提示。
背景与需求分析
当前系统存在一个显著局限性:AI模型在处理不同场景查询时缺乏上下文区分能力。无论是全局搜索还是特定产品页面的查询,系统都使用同一套提示模板。这导致模型无法针对不同场景提供最优响应,开发者不得不在响应质量上做出妥协。
技术实现方案
核心架构调整
解决方案的核心在于建立两套独立的提示系统:
- 全局组件提示系统
- 产品详情页(PDP)专用提示系统
每套系统包含:
- System Prompt:定义AI助手的基本行为和角色设定
- RAG Prompt:指导检索增强生成过程的具体指令
数据库层面改造
需要在数据库模型中新增字段来存储这两类提示:
- 为全局搜索添加system_prompt和rag_prompt字段
- 为PDP场景添加pdp_system_prompt和pdp_rag_prompt字段
业务逻辑层实现
查询处理流程需要改造为:
- 识别请求来源(全局搜索或PDP页面)
- 根据来源选择对应的提示模板
- 将选定的提示与用户查询组合后发送给AI模型
技术优势
这种分离式提示架构带来以下好处:
- 场景适配性:可以针对PDP页面优化产品相关术语和响应格式
- 性能优化:避免在全局提示中包含PDP专用指令,减少token浪费
- 维护便利:不同场景的提示可以独立更新而不互相影响
- 质量提升:消除为兼容不同场景而做出的提示内容妥协
实现注意事项
开发过程中需要注意:
- 向后兼容:确保现有使用单一提示的客户端能继续工作
- 默认值处理:当PDP专用提示未设置时应有合理的回退机制
- 性能监控:需要监控两套提示系统对响应时间和资源消耗的影响
- 测试覆盖:增加测试用例验证不同场景下提示选择的正确性
总结
ArguFlow项目通过实现场景化提示分离,有效解决了AI响应在不同使用场景下的适配问题。这种架构不仅提升了当前系统的响应质量,也为未来支持更多专用场景提供了可扩展的基础。对于类似需要处理多场景AI交互的项目,这种提示分离方案值得借鉴。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1