SD Maid SE 项目中的文件删除性能优化实践
背景介绍
在Android系统清理工具SD Maid SE的开发过程中,开发团队遇到了一个关键的性能问题:当使用root权限进行应用清理时,删除操作耗时异常,清理2000个Chrome缓存文件需要近2分钟,而使用Shizuku(ADB权限管理工具)则仅需几秒钟。这一性能差异引起了开发者的高度关注。
问题分析
通过深入分析日志和代码,开发者发现性能瓶颈主要存在于以下几个方面:
-
权限验证开销:Android复杂的权限系统导致SD Maid SE需要频繁重新评估所需的访问级别。例如,虽然可以正常访问
/storage/emulated/0
路径,但访问/storage/emulated/0/Android/data
则需要不同的权限级别。 -
进程间通信成本:原有的实现中,目录遍历和文件删除操作在主应用进程中进行,而实际的删除调用则需要跨进程传递到ADB或root进程中执行。这种频繁的进程间通信造成了显著的性能开销。
-
递归删除限制:由于需要考虑用户设置的文件/目录排除规则,系统无法简单地使用递归删除整个目录结构,必须逐个检查子目录是否包含排除项。
技术解决方案
开发团队针对上述问题实施了以下优化措施:
-
重构删除逻辑架构:
- 将目录遍历操作直接移至具有root或ADB权限的辅助进程中执行
- 减少了主进程与权限进程之间的通信次数
- 在确保权限一致性的目录结构(如
Android/data/<pkg>
)中使用Kotlin的File.deleteRecursive()
方法
-
优化权限检查机制:
- 对于已知权限需求一致的目录结构,减少冗余的权限检查
- 实现批量操作处理,减少权限验证频率
-
性能与反馈的权衡:
- 牺牲了细粒度的删除进度反馈(不再显示每个子目录/文件的删除状态)
- 换取整体删除速度的大幅提升
优化效果
经过上述改进后,SD Maid SE的文件删除性能得到了显著提升:
- 清理4GB缓存的时间从原来的10-20分钟缩短至几秒钟
- 系统资源占用降低
- 用户体验明显改善
技术启示
这个案例展示了Android系统工具开发中的几个重要考量:
-
权限管理的复杂性:Android日益严格的权限系统对系统工具开发提出了更高要求,开发者需要在功能完整性和性能之间找到平衡点。
-
进程架构设计:合理的进程划分和通信机制对性能有决定性影响,过度分割会导致性能下降。
-
用户体验权衡:有时需要牺牲某些次要功能(如详细的进度反馈)来换取核心功能的性能提升。
这个优化案例不仅解决了SD Maid SE的具体性能问题,也为类似Android系统工具的开发者提供了宝贵的设计参考。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









