在lm-evaluation-harness项目中处理远程代码信任问题的技术指南
2025-05-26 09:45:54作者:咎竹峻Karen
在使用lm-evaluation-harness项目评估法律相关任务时,开发者可能会遇到数据集加载失败的问题,特别是当使用unitxt等包含自定义代码的数据集时。本文将深入分析这一问题的根源,并提供多种解决方案。
问题背景
当尝试加载unitxt数据集时,系统会抛出错误提示"ValueError: The repository for unitxt/data contains custom code which must be executed to correctly load the dataset"。这一问题的本质在于Hugging Face数据集的远程代码执行安全机制。
技术原理
现代机器学习框架出于安全考虑,默认不信任远程代码执行。unitxt等数据集可能包含自定义的数据处理逻辑或特殊格式,这些代码需要被加载和执行才能正确解析数据集。Hugging Face生态通过trust_remote_code参数来控制这一行为。
解决方案
方法一:命令行参数传递
在运行lm_eval命令时,直接添加--trust_remote_code参数:
lm_eval --trust_remote_code --model hf --model_args pretrained=modelpath
方法二:环境变量设置
通过设置环境变量来全局启用远程代码信任:
HF_DATASETS_TRUST_REMOTE_CODE=1 lm_eval --model hf --model_args pretrained=modelpath
方法三:本地缓存数据集
对于需要更高安全性的场景,可以先将数据集下载到本地:
- 使用Python脚本预先加载并保存数据集
- 然后基于本地文件进行评估
常见问题处理
在评估过程中可能还会遇到"Repo card metadata block was not found"的警告信息。这是Hugging Face的提示性警告,表明数据集缺少README文件,不会影响实际评估过程,可以安全忽略。
最佳实践建议
- 对于生产环境,建议优先使用方法三的本地缓存方案,既解决了远程代码信任问题,又能提高评估的稳定性和可复现性
- 在开发调试阶段,可以使用方法一或方法二的简便方案快速验证
- 定期检查数据集更新,特别是当评估结果出现异常时
通过理解这些技术细节和解决方案,开发者可以更顺利地使用lm-evaluation-harness项目完成法律相关任务的评估工作。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881