首页
/ Jan项目对Deepseek蒸馏模型的技术支持方案解析

Jan项目对Deepseek蒸馏模型的技术支持方案解析

2025-05-06 20:09:20作者:温玫谨Lighthearted

背景介绍

Jan作为一个开源AI项目,近期计划在v0.5.14版本中增加对Deepseek蒸馏模型的支持。这一技术升级将为用户提供更高效的模型选择,但同时也面临着一些技术挑战需要解决。

当前面临的技术挑战

在实现Deepseek蒸馏模型支持的过程中,开发团队遇到了两个主要技术问题:

  1. 模板解析兼容性问题:GGUF格式文件使用的Jinja2模板与Jan项目当前使用的Cortex设计存在不兼容。Jan目前需要将Jinja模板解析为Cortex的格式,这一转换过程导致了诸多兼容性问题。

  2. 提示模板持久化问题:Jan目前无法持久化保存用户对prompt_template的修改,导致用户每次使用时都需要重新设置模板参数。

短期解决方案

为了尽快实现对Deepseek蒸馏模型的支持,团队制定了以下短期解决方案:

  1. 自主量化模型:团队将自行量化模型并内置prompt_template,创建专门的分支(如janhq/deepseek-distill-qwen2)来维护这一版本。主分支(main)将继续支持传统的GGUF格式以保证现有Jan用户的正常使用。

  2. 手动模板输入:对于社区提供的模型(如bartowski/...),用户需要手动粘贴系统提示模板到Jan中,虽然这不是最完美的解决方案,但可以暂时满足基本使用需求。

长期技术规划

从长远来看,团队计划对Cortex进行重构,使其能够更好地支持各种模型格式和模板系统。这将从根本上解决当前的兼容性问题,为用户提供更流畅的体验。

技术实现细节

在具体实现上,团队将重点关注以下方面:

  1. 模型量化处理:确保量化后的模型在保持性能的同时,能够与Jan的架构良好兼容。

  2. 模板系统优化:改进模板解析机制,减少格式转换带来的性能损耗和兼容性问题。

  3. 用户配置持久化:实现用户设置的长期保存功能,提升用户体验。

总结

Jan项目对Deepseek蒸馏模型的支持体现了团队对技术创新的追求和对用户需求的响应。通过短期解决方案和长期技术规划的结合,团队正在构建一个更加完善、兼容性更强的AI平台。这一技术升级将为用户带来更多模型选择,同时也为项目的未来发展奠定了坚实基础。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
239
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69