MLRun v1.10.0-rc8 版本发布:模型监控增强与工作流优化
MLRun 是一个开源的机器学习运维(MLOps)平台,它简化了机器学习工作流程的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun 提供了从数据准备到模型部署的全生命周期管理能力。
核心功能更新
模型监控功能强化
本次版本对模型监控功能进行了多项重要改进。首先引入了 ModelRunnerStep 与模型监控系统的连接,使得模型推理过程能够无缝集成到监控体系中。同时扩展了 project-summary API,为项目级别的模型监控提供了更全面的数据支持。
针对 Grafana 11 的兼容性问题,开发团队更新了模型监控仪表盘,确保用户在新版本 Grafana 中也能获得一致的监控体验。此外,还修复了离线推理测试中的等待时间问题,提高了测试的稳定性。
工作流与管道优化
在管道功能方面,v1.10.0-rc8 版本新增了管道终止能力,为用户提供了更灵活的工作流控制选项。同时改进了参数验证机制,确保管道运行的可靠性。工作流系统现在会自动为工作流运行器添加工作流 ID 标签,便于后续的追踪和管理。
框架支持与兼容性
技术栈方面,本次更新增加了对 TensorFlow 2.16 及以上版本(Keras 3.0)的支持,使 MLRun 能够兼容最新的深度学习框架。同时,项目开始逐步弃用旧的 ml-base 镜像,并在客户端和运行时环境中添加了相应的警告提示。
文档与示例更新
文档团队对多个关键部分进行了更新和完善,包括添加了大型语言模型(LLM)的介绍内容,更新了 Python 3.11 的兼容性说明,以及修正了应用运行时默认镜像的相关说明。示例项目包也进行了同步更新,包含了最新的演示案例。
安全与维护改进
在安全方面,修复了 Go 组件中的多个安全问题,提升了系统的整体安全性。同时移除了多个已弃用的 API 方法,包括 list_entities 和部分模型监控相关参数,简化了代码结构并提高了可维护性。
总结
MLRun v1.10.0-rc8 版本在模型监控、工作流管理和框架支持等方面做出了重要改进,同时加强了系统的安全性和稳定性。这些更新使得 MLRun 能够更好地支持企业级机器学习应用的开发和运维需求,为数据科学团队提供了更加强大和可靠的工具链。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00