MLRun v1.10.0-rc8 版本发布:模型监控增强与工作流优化
MLRun 是一个开源的机器学习运维(MLOps)平台,它简化了机器学习工作流程的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun 提供了从数据准备到模型部署的全生命周期管理能力。
核心功能更新
模型监控功能强化
本次版本对模型监控功能进行了多项重要改进。首先引入了 ModelRunnerStep 与模型监控系统的连接,使得模型推理过程能够无缝集成到监控体系中。同时扩展了 project-summary API,为项目级别的模型监控提供了更全面的数据支持。
针对 Grafana 11 的兼容性问题,开发团队更新了模型监控仪表盘,确保用户在新版本 Grafana 中也能获得一致的监控体验。此外,还修复了离线推理测试中的等待时间问题,提高了测试的稳定性。
工作流与管道优化
在管道功能方面,v1.10.0-rc8 版本新增了管道终止能力,为用户提供了更灵活的工作流控制选项。同时改进了参数验证机制,确保管道运行的可靠性。工作流系统现在会自动为工作流运行器添加工作流 ID 标签,便于后续的追踪和管理。
框架支持与兼容性
技术栈方面,本次更新增加了对 TensorFlow 2.16 及以上版本(Keras 3.0)的支持,使 MLRun 能够兼容最新的深度学习框架。同时,项目开始逐步弃用旧的 ml-base 镜像,并在客户端和运行时环境中添加了相应的警告提示。
文档与示例更新
文档团队对多个关键部分进行了更新和完善,包括添加了大型语言模型(LLM)的介绍内容,更新了 Python 3.11 的兼容性说明,以及修正了应用运行时默认镜像的相关说明。示例项目包也进行了同步更新,包含了最新的演示案例。
安全与维护改进
在安全方面,修复了 Go 组件中的多个安全问题,提升了系统的整体安全性。同时移除了多个已弃用的 API 方法,包括 list_entities 和部分模型监控相关参数,简化了代码结构并提高了可维护性。
总结
MLRun v1.10.0-rc8 版本在模型监控、工作流管理和框架支持等方面做出了重要改进,同时加强了系统的安全性和稳定性。这些更新使得 MLRun 能够更好地支持企业级机器学习应用的开发和运维需求,为数据科学团队提供了更加强大和可靠的工具链。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00