MLRun v1.10.0-rc8 版本发布:模型监控增强与工作流优化
MLRun 是一个开源的机器学习运维(MLOps)平台,它简化了机器学习工作流程的构建、部署和管理过程。作为数据科学家和机器学习工程师的强大工具,MLRun 提供了从数据准备到模型部署的全生命周期管理能力。
核心功能更新
模型监控功能强化
本次版本对模型监控功能进行了多项重要改进。首先引入了 ModelRunnerStep 与模型监控系统的连接,使得模型推理过程能够无缝集成到监控体系中。同时扩展了 project-summary API,为项目级别的模型监控提供了更全面的数据支持。
针对 Grafana 11 的兼容性问题,开发团队更新了模型监控仪表盘,确保用户在新版本 Grafana 中也能获得一致的监控体验。此外,还修复了离线推理测试中的等待时间问题,提高了测试的稳定性。
工作流与管道优化
在管道功能方面,v1.10.0-rc8 版本新增了管道终止能力,为用户提供了更灵活的工作流控制选项。同时改进了参数验证机制,确保管道运行的可靠性。工作流系统现在会自动为工作流运行器添加工作流 ID 标签,便于后续的追踪和管理。
框架支持与兼容性
技术栈方面,本次更新增加了对 TensorFlow 2.16 及以上版本(Keras 3.0)的支持,使 MLRun 能够兼容最新的深度学习框架。同时,项目开始逐步弃用旧的 ml-base 镜像,并在客户端和运行时环境中添加了相应的警告提示。
文档与示例更新
文档团队对多个关键部分进行了更新和完善,包括添加了大型语言模型(LLM)的介绍内容,更新了 Python 3.11 的兼容性说明,以及修正了应用运行时默认镜像的相关说明。示例项目包也进行了同步更新,包含了最新的演示案例。
安全与维护改进
在安全方面,修复了 Go 组件中的多个安全问题,提升了系统的整体安全性。同时移除了多个已弃用的 API 方法,包括 list_entities 和部分模型监控相关参数,简化了代码结构并提高了可维护性。
总结
MLRun v1.10.0-rc8 版本在模型监控、工作流管理和框架支持等方面做出了重要改进,同时加强了系统的安全性和稳定性。这些更新使得 MLRun 能够更好地支持企业级机器学习应用的开发和运维需求,为数据科学团队提供了更加强大和可靠的工具链。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00