Apache Fury 序列化 Fastjson 1.x 版本 JSONObject 列表时的 ClassCastException 问题分析
问题背景
Apache Fury 是一个高性能的序列化框架,在 Java 生态系统中提供了比原生 Java 序列化更高效的解决方案。近期在使用 Fury 0.6.0-SNAPSHOT 版本时,发现了一个与 Fastjson 1.x 版本兼容性相关的问题。
问题现象
当尝试序列化一个包含 List<JSONObject> 字段的对象时,如果使用的是 Fastjson 1.2.70 版本,会抛出 ClassCastException 异常。错误信息表明 Fury 内部在尝试将 StringKeyMapSerializer 转换为 JDKCompatibleMapSerializer 时失败。
问题复现
通过以下代码可以稳定复现该问题:
public class TestMain {
static ThreadSafeFury fury = Fury.builder().withLanguage(Language.JAVA)
.requireClassRegistration(false)
.withRefTracking(true)
.registerGuavaTypes(false)
.withCompatibleMode(CompatibleMode.COMPATIBLE)
.withScopedMetaShare(true)
.buildThreadSafeFury();
public static void main(String[] args) {
DemoResponse resp = new DemoResponse();
byte[] serialize = fury.serialize(resp);
System.out.println("size:" + serialize.length);
}
}
@Data
public class DemoResponse {
private List<JSONObject> jsonObjs;
public DemoResponse() {}
}
问题分析
这个问题的根本原因在于 Fury 对不同版本 Fastjson 的 JSONObject 处理方式存在差异:
-
Fastjson 1.x 和 2.x 的 JSONObject 实现差异:Fastjson 2.x 版本对 JSONObject 进行了重构,其内部实现与 1.x 版本有显著不同。
-
Fury 的序列化策略:Fury 针对 Map 类型的序列化提供了多种策略,包括
StringKeyMapSerializer和JDKCompatibleMapSerializer。对于 Fastjson 1.x 的 JSONObject,Fury 错误地选择了不兼容的序列化器。 -
类型推断问题:Fury 在运行时动态创建序列化器时,未能正确识别 Fastjson 1.x JSONObject 的实际类型特征,导致选择了错误的序列化策略。
解决方案
Apache Fury 团队已经修复了这个问题,修复方案主要包括:
-
版本检测:在序列化过程中检测 Fastjson 的版本,针对不同版本采用不同的序列化策略。
-
类型兼容处理:确保 Fastjson 1.x 的 JSONObject 能够被正确识别并使用兼容的序列化器。
-
错误处理增强:在序列化器选择失败时提供更友好的错误信息,帮助开发者快速定位问题。
最佳实践
对于开发者来说,在使用 Fury 序列化 Fastjson 对象时,建议:
-
版本一致性:尽量保持 Fury 和 Fastjson 版本的匹配性,特别是生产环境中。
-
升级建议:如果可能,考虑将 Fastjson 升级到 2.x 版本,以获得更好的性能和兼容性。
-
测试覆盖:在涉及 JSON 序列化的场景中,增加针对不同 Fastjson 版本的测试用例。
总结
这个问题展示了序列化框架在处理第三方库时的复杂性,特别是当这些库存在多个主要版本时。Apache Fury 通过灵活的序列化策略和版本检测机制,解决了 Fastjson 1.x 和 2.x 的兼容性问题,为开发者提供了更稳定的序列化体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00