Apache Fury 序列化 Fastjson 1.x 版本 JSONObject 列表时的 ClassCastException 问题分析
问题背景
Apache Fury 是一个高性能的序列化框架,在 Java 生态系统中提供了比原生 Java 序列化更高效的解决方案。近期在使用 Fury 0.6.0-SNAPSHOT 版本时,发现了一个与 Fastjson 1.x 版本兼容性相关的问题。
问题现象
当尝试序列化一个包含 List<JSONObject> 字段的对象时,如果使用的是 Fastjson 1.2.70 版本,会抛出 ClassCastException 异常。错误信息表明 Fury 内部在尝试将 StringKeyMapSerializer 转换为 JDKCompatibleMapSerializer 时失败。
问题复现
通过以下代码可以稳定复现该问题:
public class TestMain {
static ThreadSafeFury fury = Fury.builder().withLanguage(Language.JAVA)
.requireClassRegistration(false)
.withRefTracking(true)
.registerGuavaTypes(false)
.withCompatibleMode(CompatibleMode.COMPATIBLE)
.withScopedMetaShare(true)
.buildThreadSafeFury();
public static void main(String[] args) {
DemoResponse resp = new DemoResponse();
byte[] serialize = fury.serialize(resp);
System.out.println("size:" + serialize.length);
}
}
@Data
public class DemoResponse {
private List<JSONObject> jsonObjs;
public DemoResponse() {}
}
问题分析
这个问题的根本原因在于 Fury 对不同版本 Fastjson 的 JSONObject 处理方式存在差异:
-
Fastjson 1.x 和 2.x 的 JSONObject 实现差异:Fastjson 2.x 版本对 JSONObject 进行了重构,其内部实现与 1.x 版本有显著不同。
-
Fury 的序列化策略:Fury 针对 Map 类型的序列化提供了多种策略,包括
StringKeyMapSerializer和JDKCompatibleMapSerializer。对于 Fastjson 1.x 的 JSONObject,Fury 错误地选择了不兼容的序列化器。 -
类型推断问题:Fury 在运行时动态创建序列化器时,未能正确识别 Fastjson 1.x JSONObject 的实际类型特征,导致选择了错误的序列化策略。
解决方案
Apache Fury 团队已经修复了这个问题,修复方案主要包括:
-
版本检测:在序列化过程中检测 Fastjson 的版本,针对不同版本采用不同的序列化策略。
-
类型兼容处理:确保 Fastjson 1.x 的 JSONObject 能够被正确识别并使用兼容的序列化器。
-
错误处理增强:在序列化器选择失败时提供更友好的错误信息,帮助开发者快速定位问题。
最佳实践
对于开发者来说,在使用 Fury 序列化 Fastjson 对象时,建议:
-
版本一致性:尽量保持 Fury 和 Fastjson 版本的匹配性,特别是生产环境中。
-
升级建议:如果可能,考虑将 Fastjson 升级到 2.x 版本,以获得更好的性能和兼容性。
-
测试覆盖:在涉及 JSON 序列化的场景中,增加针对不同 Fastjson 版本的测试用例。
总结
这个问题展示了序列化框架在处理第三方库时的复杂性,特别是当这些库存在多个主要版本时。Apache Fury 通过灵活的序列化策略和版本检测机制,解决了 Fastjson 1.x 和 2.x 的兼容性问题,为开发者提供了更稳定的序列化体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00