DEAP(分布式进化算法在Python中)
项目介绍
DEAP,即Distributed Evolutionary Algorithms in Python,是一种创新的进化计算框架,专为快速原型设计和理念测试而生。该框架强调算法的清晰表达及数据结构的透明性,能与multiprocessing和SCOOP这样的并行机制无缝协作。DEAP支持多种遗传算法表示,包括列表、数组、集合、字典、树以及Numpy数组等。它内建一系列操作符和算法,同时也提供了先进的功能如遗传编程、检查点存储、约束处理等。
项目快速启动
要开始使用DEAP,确保你的环境中已安装了Python(推荐版本为2.6及以上,特别是Python 2.7以支持multiprocessing模块)。最新的DEAP可以通过以下命令安装:
pip install deap
或者获取最新开发版:
pip install git+https://github.com/DEAP/deap@master
安装完成后,一个简单的快速启动示例展示如何定义一个基本的遗传算法流程:
from deap import base
from deap import creator
from deap import tools
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_bool", lambda: random.randint(0, 1))
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# 定义评估函数等...
def evalOneMax(individual):
return sum(individual),
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# 产生初始种群并开始进化过程...
pop = toolbox.population(n=300)
CXPB, MUTPB, NGEN = 0.5, 0.2, 40
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "avg", "std", "min", "max"
for g in range(NGEN):
offspring = Toolbox.select(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < CXPB:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < MUTPB:
toolbox.mutate(mutant)
del mutant.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop[:] = offspring
record = stats.compile(pop)
logbook.record(gen=g, evals=len(invalid_ind), **record)
print(logbook.stream)
# 输出进化过程的结果
best_ind = tools.selBest(pop, 1)[0]
print("Best individual is %s, %s" % (best_ind, best_ind.fitness.values))
应用案例和最佳实践
DEAP被广泛应用于复杂优化问题,如函数优化、组合优化、机器学习中的特征选择、遗传编程创建自适应系统等。最佳实践通常包括明确定义个体的表示、精心设计适合问题的适应度函数、选择恰当的遗传算子(如交叉、变异)、以及利用并行计算提高算法效率。对于更高级的应用,考虑遗传编程时,确保理解怎样处理复杂的代码结构和避免过拟合是关键。
典型生态项目
DEAP的生态系统包括一系列基于其构建的项目和工具,这些项目往往探索特定领域的应用或扩展DEAP的功能。例如,社区贡献的项目可能会涉及特定行业问题的解决方案、可视化工具来帮助分析进化过程、或是对DEAP核心库的增强模块。由于没有列出具体的项目实例,建议通过GitHub上的DEAP仓库查看贡献者们分享的示例代码和相关讨论,以发现更多实际应用场景和技术实践。
本文档概述了DEAP的基本概念、快速启动步骤、以及应用和生态系统的一般性指导。深入理解和实践DEAP的能力,将依赖于对具体算法的理解及其在实际问题解决中的灵活应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00