Kubefirst项目中ArgoCD在Civo管理集群部署中的卡顿问题分析与解决方案
问题背景
在Kubefirst项目2.4.0至2.4.2版本中,用户在使用Civo云平台部署管理集群时,偶尔会遇到ArgoCD同步过程中卡顿的问题。这个问题通常发生在ArgoCD开始自我管理阶段后不久,表现为部署状态停滞在"Waiting for rollout to finish: observed deployment generation less than desired generation"状态且无法自动恢复。
问题现象
当问题发生时,通过端口转发连接到ArgoCD界面,可以观察到多个部署处于无法完成的状态。更严重的是,一旦集群陷入这种状态,常规的修复手段如资源孤立、移除并重新添加ArgoCD等操作都无法使集群恢复正常,唯一可行的解决方案是完全重新部署管理堆栈。
技术分析
经过深入调查,我们发现问题的根源与ArgoCD的自我管理机制有关。具体流程如下:
-
初始安装阶段:Kubefirst使用Kustomize基于上游云安装配置部署ArgoCD。
-
OIDC配置更新:在编排过程中,系统会使用GitOps方式更新ArgoCD配置,添加新创建的OIDC认证信息。这一步骤会绑定到用户自己的GitOps仓库,包含特定于用户域和SSO的详细信息。
-
服务重启:为了应用新的Vault SSO设置,系统会触发argocd-server的重新启动。
-
问题出现:当argocd-server完成重启后,它无法正确协调或管理许多正在跟踪的部署或StatefulSet资源。
值得注意的是,这个问题具有以下特点:
- 仅影响在ArgoCD重启同步波次后创建的资源
- 目前仅在Civo云平台上观察到
- 早期版本(如2.3.8)原本在Civo上工作正常,但后来也开始出现相同问题
解决方案
Kubefirst团队在2.4.3版本中彻底解决了这个问题。对于已经遇到此问题的用户,可以通过以下命令手动恢复ArgoCD的正常运行:
kubectl -n argocd get deploy/argocd-server -oyaml | kubectl replace -f -
这个命令会强制替换argocd-server的部署配置,通常能够解除ArgoCD的卡顿状态。
最佳实践建议
为了避免类似问题,建议用户:
- 始终使用最新稳定版本的Kubefirst进行部署
- 在部署过程中密切监控ArgoCD的状态
- 遇到问题时及时收集日志信息以便诊断
- 考虑在非生产环境先进行测试部署
总结
Kubefirst团队快速响应并解决了ArgoCD在Civo云平台上的部署卡顿问题,展现了项目对稳定性的高度重视。通过2.4.3版本的修复,用户现在可以更可靠地在Civo上部署管理集群。这一问题的解决也体现了开源社区协作的价值,以及Kubefirst项目持续改进的承诺。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









