ntopng流量监控中图形显示异常问题分析与解决
问题背景
在使用ntopng进行网络流量监控时,用户遇到了图形显示异常的问题。具体表现为ntopng显示的流量数据远低于实际网络流量,特别是在高流量时段(如6Gbps峰值),ntopng仅显示约300Mbps,导致基于这些数据做出的网络对等决策出现偏差。
环境配置
用户环境配置如下:
- 使用nProbe作为流量采集设备,通过PF_RING ZC模式捕获数据
- 服务器配备了多个网络接口,包括ixgbe和igb驱动
- 系统为Rocky Linux 9.3
- nProbe版本为10.6.240927
- PF_RING版本为8.8.0.240805
问题分析
通过检查用户提供的日志和配置信息,发现以下几个关键点:
-
流量采集不完整:nProbe显示的流量统计(约160Mbps)与实际网络流量(6Gbps)存在巨大差异。
-
RSS队列处理问题:初步分析表明,系统可能只处理了一个RSS(接收端缩放)队列,而没有充分利用多队列特性。在ixgbe驱动接口上,RSS队列数配置为32,但实际可能未被完全利用。
-
ZC模式验证:通过
pfcount -L -v 1命令检查发现,部分接口(如eno2)的ZC模式状态显示为"NotFound",这可能影响流量捕获效率。 -
协议识别问题:nProbe日志显示大部分流量被标记为"Unknown/0"协议,这表明深层包检测可能存在问题。
解决方案
经过深入分析,最终确认问题的根本原因是RSS队列处理不完整。具体解决方案包括:
-
完整RSS队列处理:确保nProbe能够处理所有RSS队列。在ixgbe驱动接口上,应配置为使用所有32个RSS队列。
-
ZC模式验证与配置:对于显示"NotFound"状态的接口,需要检查PF_RING ZC驱动是否正确加载,并重新配置ZC模式。
-
协议识别优化:更新L7协议识别规则,减少"Unknown"协议的比例,提高流量分类准确性。
实施效果
实施上述解决方案后:
- 流量监控数据与实际网络流量匹配度显著提高
- 6Gbps的峰值流量能够被准确捕获和显示
- 协议分类更加准确,为网络决策提供可靠依据
最佳实践建议
-
定期验证采集配置:特别是在网络拓扑或流量模式发生变化时。
-
监控系统资源使用:确保有足够的CPU和内存资源处理高流量。
-
保持软件更新:及时更新ntopng和nProbe到最新版本,获取性能改进和bug修复。
-
全面测试新配置:在生产环境部署前,应在测试环境中验证配置变更的效果。
通过本次问题的解决,不仅修复了当前的监控偏差,也为类似环境下的ntopng部署提供了有价值的参考经验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00