ntopng流量监控中图形显示异常问题分析与解决
问题背景
在使用ntopng进行网络流量监控时,用户遇到了图形显示异常的问题。具体表现为ntopng显示的流量数据远低于实际网络流量,特别是在高流量时段(如6Gbps峰值),ntopng仅显示约300Mbps,导致基于这些数据做出的网络对等决策出现偏差。
环境配置
用户环境配置如下:
- 使用nProbe作为流量采集设备,通过PF_RING ZC模式捕获数据
- 服务器配备了多个网络接口,包括ixgbe和igb驱动
- 系统为Rocky Linux 9.3
- nProbe版本为10.6.240927
- PF_RING版本为8.8.0.240805
问题分析
通过检查用户提供的日志和配置信息,发现以下几个关键点:
-
流量采集不完整:nProbe显示的流量统计(约160Mbps)与实际网络流量(6Gbps)存在巨大差异。
-
RSS队列处理问题:初步分析表明,系统可能只处理了一个RSS(接收端缩放)队列,而没有充分利用多队列特性。在ixgbe驱动接口上,RSS队列数配置为32,但实际可能未被完全利用。
-
ZC模式验证:通过
pfcount -L -v 1命令检查发现,部分接口(如eno2)的ZC模式状态显示为"NotFound",这可能影响流量捕获效率。 -
协议识别问题:nProbe日志显示大部分流量被标记为"Unknown/0"协议,这表明深层包检测可能存在问题。
解决方案
经过深入分析,最终确认问题的根本原因是RSS队列处理不完整。具体解决方案包括:
-
完整RSS队列处理:确保nProbe能够处理所有RSS队列。在ixgbe驱动接口上,应配置为使用所有32个RSS队列。
-
ZC模式验证与配置:对于显示"NotFound"状态的接口,需要检查PF_RING ZC驱动是否正确加载,并重新配置ZC模式。
-
协议识别优化:更新L7协议识别规则,减少"Unknown"协议的比例,提高流量分类准确性。
实施效果
实施上述解决方案后:
- 流量监控数据与实际网络流量匹配度显著提高
- 6Gbps的峰值流量能够被准确捕获和显示
- 协议分类更加准确,为网络决策提供可靠依据
最佳实践建议
-
定期验证采集配置:特别是在网络拓扑或流量模式发生变化时。
-
监控系统资源使用:确保有足够的CPU和内存资源处理高流量。
-
保持软件更新:及时更新ntopng和nProbe到最新版本,获取性能改进和bug修复。
-
全面测试新配置:在生产环境部署前,应在测试环境中验证配置变更的效果。
通过本次问题的解决,不仅修复了当前的监控偏差,也为类似环境下的ntopng部署提供了有价值的参考经验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00