ntopng流量监控中图形显示异常问题分析与解决
问题背景
在使用ntopng进行网络流量监控时,用户遇到了图形显示异常的问题。具体表现为ntopng显示的流量数据远低于实际网络流量,特别是在高流量时段(如6Gbps峰值),ntopng仅显示约300Mbps,导致基于这些数据做出的网络对等决策出现偏差。
环境配置
用户环境配置如下:
- 使用nProbe作为流量采集设备,通过PF_RING ZC模式捕获数据
- 服务器配备了多个网络接口,包括ixgbe和igb驱动
- 系统为Rocky Linux 9.3
- nProbe版本为10.6.240927
- PF_RING版本为8.8.0.240805
问题分析
通过检查用户提供的日志和配置信息,发现以下几个关键点:
-
流量采集不完整:nProbe显示的流量统计(约160Mbps)与实际网络流量(6Gbps)存在巨大差异。
-
RSS队列处理问题:初步分析表明,系统可能只处理了一个RSS(接收端缩放)队列,而没有充分利用多队列特性。在ixgbe驱动接口上,RSS队列数配置为32,但实际可能未被完全利用。
-
ZC模式验证:通过
pfcount -L -v 1命令检查发现,部分接口(如eno2)的ZC模式状态显示为"NotFound",这可能影响流量捕获效率。 -
协议识别问题:nProbe日志显示大部分流量被标记为"Unknown/0"协议,这表明深层包检测可能存在问题。
解决方案
经过深入分析,最终确认问题的根本原因是RSS队列处理不完整。具体解决方案包括:
-
完整RSS队列处理:确保nProbe能够处理所有RSS队列。在ixgbe驱动接口上,应配置为使用所有32个RSS队列。
-
ZC模式验证与配置:对于显示"NotFound"状态的接口,需要检查PF_RING ZC驱动是否正确加载,并重新配置ZC模式。
-
协议识别优化:更新L7协议识别规则,减少"Unknown"协议的比例,提高流量分类准确性。
实施效果
实施上述解决方案后:
- 流量监控数据与实际网络流量匹配度显著提高
- 6Gbps的峰值流量能够被准确捕获和显示
- 协议分类更加准确,为网络决策提供可靠依据
最佳实践建议
-
定期验证采集配置:特别是在网络拓扑或流量模式发生变化时。
-
监控系统资源使用:确保有足够的CPU和内存资源处理高流量。
-
保持软件更新:及时更新ntopng和nProbe到最新版本,获取性能改进和bug修复。
-
全面测试新配置:在生产环境部署前,应在测试环境中验证配置变更的效果。
通过本次问题的解决,不仅修复了当前的监控偏差,也为类似环境下的ntopng部署提供了有价值的参考经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00