Yalantinglibs项目中结构体序列化与RPC传输的实践指南
2025-07-09 21:53:24作者:温玫谨Lighthearted
在分布式系统开发中,结构体数据的序列化和远程过程调用(RPC)传输是常见的需求。Yalantinglibs项目提供了多种灵活的方式来实现这一目标,本文将详细介绍这些方法及其适用场景。
直接结构体传输方式
最简洁的方式是直接使用结构体作为RPC函数的参数。Yalantinglibs的coro_rpc组件会自动处理序列化和反序列化过程:
struct custom {
int a;
char c;
double d;
};
// 服务端函数定义
void rpc_function(custom data) {
// 直接使用反序列化后的结构体
}
// 客户端调用
coro_rpc::coro_rpc_client client;
custom data{10, 'A', 3.14};
client.call<rpc_function>(data);
这种方式代码简洁,无需关心底层序列化细节,适合大多数常规场景。
手动序列化控制
当需要更精细地控制序列化过程时,可以使用struct_pack组件将结构体序列化为字节向量:
custom data{};
// 序列化为std::vector<std::byte>
auto buffer = struct_pack::serialize<std::vector<std::byte>>(data);
// 反序列化
auto result = struct_pack::deserialize<custom>(buffer);
if (result) {
custom& data = result.value();
}
这种方式适合需要预处理序列化数据或实现自定义协议的场景。
零拷贝数据传输
对于性能敏感的应用,Yalantinglibs提供了零拷贝的附件传输机制:
// 服务端接收附件数据
void process_data() {
auto ctx = coro_rpc::get_context();
std::string_view attachment = ctx->get_request_attachment();
// 处理原始字节数据
}
// 客户端发送
coro_rpc::coro_rpc_client client;
std::vector<std::byte> raw_data;
client.set_req_attachment(std::string_view{
reinterpret_cast<const char*>(raw_data.data()),
raw_data.size()
});
client.call<process_data>();
附件传输避免了不必要的内存拷贝,特别适合传输大块二进制数据。
原始字节流传输
如果需要直接操作字节流,可以使用span或vector作为参数:
// 使用span接收数据(无额外拷贝)
void handle_bytes(std::span<std::byte> data);
// 或使用vector接收(会有一次拷贝)
void handle_bytes(std::vector<std::byte>& data);
// 客户端调用
std::vector<std::byte> buffer;
client.call<handle_bytes>(buffer);
选择建议
- 对于简单结构体,推荐直接传输结构体,代码最简洁
- 需要预处理数据时,使用struct_pack手动序列化
- 传输大块二进制数据时,使用附件机制实现零拷贝
- 特殊协议处理时,可选择原始字节流方式
Yalantinglibs提供的这几种方式覆盖了从简单到复杂的各种使用场景,开发者可以根据具体需求选择最适合的方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
121
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.17 K