SWIFT项目v3.2.2版本发布:大模型训练与推理能力全面升级
SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是一个专注于大模型高效训练与推理的开源框架。该项目由ModelScope团队开发维护,旨在为研究人员和开发者提供一套简单易用、功能强大的工具集,帮助用户在各种硬件环境下高效地进行大模型的微调与部署。
本次发布的v3.2.2版本带来了多项重要更新,特别是在分布式训练、多模态模型支持、训练优化等方面有显著提升。下面我们将详细介绍这些新特性和改进。
Megatron-SWIFT:分布式训练新利器
本次版本最重磅的更新是引入了Megatron-SWIFT模块,这是一个基于Megatron-LM的分布式训练框架。它支持多种并行训练技术,包括:
- 张量并行(Tensor Parallelism, TP)
- 流水线并行(Pipeline Parallelism, PP)
- 序列并行(Sequence Parallelism, SP)
- 上下文并行(Context Parallelism, CP)
这套系统特别适合超大规模模型的预训练和微调,目前已支持Qwen系列、Llama系列、Deepseek-R1蒸馏系列等100多个主流大模型。在实际应用中,Megatron-SWIFT通过以下创新点显著提升了训练效率:
- 流式数据集支持:可以处理超大规模数据集而无需全部加载到内存
- 序列打包(Sequence Packing):有效减少padding带来的计算浪费
- 灵活的并行策略组合:用户可以根据硬件配置自由组合不同的并行方式
多轮GRPO训练与优化
针对多轮对话和工具调用场景(如Deep Search等agent应用),本版本对GRPO(Generalized Reinforcement Policy Optimization)训练进行了多项增强:
- 多轮对话支持:完整保留了对话历史,使模型能够学习复杂的多轮交互模式
- Mini-batch训练:通过分批处理显著降低了显存消耗
- 奖励模型优化:引入了余弦奖励机制和ε分离策略,提升了训练稳定性
这些改进使得GRPO训练更加适合实际应用场景,特别是在需要长期记忆和复杂推理的任务中表现更优。
多模态模型全面支持
v3.2.2版本显著加强了对多模态模型的支持:
- 视觉语言模型训练:新增对iic/gme-Qwen2-VL-2B-Instruct等视觉语言模型的Embedding训练支持
- 灵活的模型结构调整:通过外置plugin机制,支持同时使用LoRA训练LLM部分和全参数训练ViT部分,并可为不同部分设置不同学习率
- 多标签分类与回归:扩展了模型能力边界,支持多标签分类和回归任务的端到端训练与部署
训练与评估流程优化
为了提高训练效率和模型质量,本版本引入了多项训练流程改进:
- 实时评估机制:通过EvalScope可以在训练过程中定期评估模型性能,及时发现训练问题
- 数据采样策略:新增随机采样选项,丰富了数据利用方式
- 损失函数优化:针对Embedding训练改进了InfoNCE损失计算方式,支持硬负样本
新模型支持
v3.2.2版本扩展了对以下新模型系列的支持:
- Qwen2.5-VL-32B-Instruct视觉语言大模型
- Google最新发布的Gemma-3-4B-IT系列
- DeepSeek-V3-0324最新版本
- Mistral-Small-3.1-24B多轮对话优化版本
这些新模型的加入进一步丰富了SWIFT的模型生态,为用户提供了更多选择。
性能优化与问题修复
除了新特性外,本次版本还包含多项重要优化:
- 修复了vLLM引擎的内存泄漏问题
- 改进了NPU设备上的上下文管理
- 优化了LoRA模块的分割策略
- 提升了分布式训练的稳定性
- 解决了多轮GRPO训练中的若干边界条件问题
这些改进使得框架在各种硬件环境下的运行更加稳定可靠。
总结
SWIFT v3.2.2版本通过引入Megatron-SWIFT分布式训练框架、增强多模态支持、优化训练流程等一系列重大更新,进一步巩固了其作为大模型高效训练与推理解决方案的地位。无论是学术研究还是工业应用,这个版本都提供了更强大、更灵活的工具集,帮助用户更高效地开发和部署大模型应用。
对于已经使用SWIFT的用户,建议升级到这个版本以获得更好的性能和更多功能;对于新用户,现在正是开始探索大模型微调与部署的绝佳时机。随着生态的不断丰富,SWIFT正在成为大模型技术栈中不可或缺的一环。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00