SWIFT项目v3.2.2版本发布:大模型训练与推理能力全面升级
SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是一个专注于大模型高效训练与推理的开源框架。该项目由ModelScope团队开发维护,旨在为研究人员和开发者提供一套简单易用、功能强大的工具集,帮助用户在各种硬件环境下高效地进行大模型的微调与部署。
本次发布的v3.2.2版本带来了多项重要更新,特别是在分布式训练、多模态模型支持、训练优化等方面有显著提升。下面我们将详细介绍这些新特性和改进。
Megatron-SWIFT:分布式训练新利器
本次版本最重磅的更新是引入了Megatron-SWIFT模块,这是一个基于Megatron-LM的分布式训练框架。它支持多种并行训练技术,包括:
- 张量并行(Tensor Parallelism, TP)
- 流水线并行(Pipeline Parallelism, PP)
- 序列并行(Sequence Parallelism, SP)
- 上下文并行(Context Parallelism, CP)
这套系统特别适合超大规模模型的预训练和微调,目前已支持Qwen系列、Llama系列、Deepseek-R1蒸馏系列等100多个主流大模型。在实际应用中,Megatron-SWIFT通过以下创新点显著提升了训练效率:
- 流式数据集支持:可以处理超大规模数据集而无需全部加载到内存
- 序列打包(Sequence Packing):有效减少padding带来的计算浪费
- 灵活的并行策略组合:用户可以根据硬件配置自由组合不同的并行方式
多轮GRPO训练与优化
针对多轮对话和工具调用场景(如Deep Search等agent应用),本版本对GRPO(Generalized Reinforcement Policy Optimization)训练进行了多项增强:
- 多轮对话支持:完整保留了对话历史,使模型能够学习复杂的多轮交互模式
- Mini-batch训练:通过分批处理显著降低了显存消耗
- 奖励模型优化:引入了余弦奖励机制和ε分离策略,提升了训练稳定性
这些改进使得GRPO训练更加适合实际应用场景,特别是在需要长期记忆和复杂推理的任务中表现更优。
多模态模型全面支持
v3.2.2版本显著加强了对多模态模型的支持:
- 视觉语言模型训练:新增对iic/gme-Qwen2-VL-2B-Instruct等视觉语言模型的Embedding训练支持
- 灵活的模型结构调整:通过外置plugin机制,支持同时使用LoRA训练LLM部分和全参数训练ViT部分,并可为不同部分设置不同学习率
- 多标签分类与回归:扩展了模型能力边界,支持多标签分类和回归任务的端到端训练与部署
训练与评估流程优化
为了提高训练效率和模型质量,本版本引入了多项训练流程改进:
- 实时评估机制:通过EvalScope可以在训练过程中定期评估模型性能,及时发现训练问题
- 数据采样策略:新增随机采样选项,丰富了数据利用方式
- 损失函数优化:针对Embedding训练改进了InfoNCE损失计算方式,支持硬负样本
新模型支持
v3.2.2版本扩展了对以下新模型系列的支持:
- Qwen2.5-VL-32B-Instruct视觉语言大模型
- Google最新发布的Gemma-3-4B-IT系列
- DeepSeek-V3-0324最新版本
- Mistral-Small-3.1-24B多轮对话优化版本
这些新模型的加入进一步丰富了SWIFT的模型生态,为用户提供了更多选择。
性能优化与问题修复
除了新特性外,本次版本还包含多项重要优化:
- 修复了vLLM引擎的内存泄漏问题
- 改进了NPU设备上的上下文管理
- 优化了LoRA模块的分割策略
- 提升了分布式训练的稳定性
- 解决了多轮GRPO训练中的若干边界条件问题
这些改进使得框架在各种硬件环境下的运行更加稳定可靠。
总结
SWIFT v3.2.2版本通过引入Megatron-SWIFT分布式训练框架、增强多模态支持、优化训练流程等一系列重大更新,进一步巩固了其作为大模型高效训练与推理解决方案的地位。无论是学术研究还是工业应用,这个版本都提供了更强大、更灵活的工具集,帮助用户更高效地开发和部署大模型应用。
对于已经使用SWIFT的用户,建议升级到这个版本以获得更好的性能和更多功能;对于新用户,现在正是开始探索大模型微调与部署的绝佳时机。随着生态的不断丰富,SWIFT正在成为大模型技术栈中不可或缺的一环。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00