QUnit 项目中实现近似数值断言的最佳实践
在 JavaScript 测试框架 QUnit 的开发过程中,数值比较是一个常见但容易出错的场景。特别是在处理浮点数运算时,由于计算机二进制表示的限制,直接使用严格相等断言往往会导致测试失败。本文将深入探讨 QUnit 中实现近似数值断言的技术方案及其背后的设计考量。
浮点数比较的挑战
浮点数在计算机中的表示存在精度限制,这导致简单的数学运算可能产生微小的误差。例如,0.1 + 0.2 在 JavaScript 中不等于 0.3,而是等于 0.30000000000000004。这种特性使得在测试中直接使用严格相等断言(assert.equal)变得不可靠。
行业解决方案分析
主流测试框架普遍提供了近似数值比较的解决方案:
-
绝对误差模式:通过指定一个可接受的误差范围(delta)来判断两个数值是否近似相等。这种方式的数学表达式为
Math.abs(actual - expected) <= delta,被 qunit-assert-close 插件和 Chai 等框架采用。 -
相对精度模式:如 Jasmine 和 Jest 的
toBeCloseTo方法,通过指定有效数字位数(precision)来判断近似相等。其核心算法考虑了科学计数法的精度问题。 -
区间范围模式:如 Expect.js 的
within方法,直接指定可接受的最小值和最大值范围。
QUnit 的技术实现
QUnit 最终选择了绝对误差模式作为基础实现,主要基于以下考虑:
-
直观性:delta 参数直接表达了可接受的最大误差,概念上更易于理解。
-
灵活性:可以处理各种量级的数值比较,而不仅限于小数位精度。
-
兼容性:与现有生态插件 qunit-assert-close 保持一致性,降低迁移成本。
实现的核心代码如下:
function closeTo(actual, expected, delta) {
return Math.abs(actual - expected) <= delta;
}
同时增加了参数类型检查,避免因缺失 delta 参数导致的隐蔽错误。
实际应用建议
在实际测试中,开发者应该:
-
根据被测场景选择合适的 delta 值。对于财务计算等精度要求高的场景,delta 应该设置得更小。
-
避免过度依赖近似断言。在可能的情况下,优先考虑重构代码使其产生确定性的结果。
-
对于界面动画等确实需要模糊匹配的场景,合理设置 delta 以平衡测试的严格性和稳定性。
总结
QUnit 通过引入近似数值断言功能,解决了浮点数比较这一常见测试难题。这一设计既考虑了数学上的严谨性,又兼顾了开发者体验和生态兼容性。理解其背后的技术原理和适用场景,有助于开发者编写更健壮、可靠的测试代码。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00