TVM 在 RISC-V 架构下的 JIT 编译问题与解决方案
问题背景
在将 Apache TVM 深度学习编译器部署到 RISC-V 架构的 Banana Pi K1 开发板时,开发者遇到了一个棘手的 CPU 兼容性问题。当使用 LLVM 19.1.3 和 TVM 0.18.0 版本时,系统会抛出"Unsupported CPU type"错误,并导致程序异常终止。
错误现象分析
错误信息明确指出问题发生在 LLVM 的 RuntimeDyldELF.cpp 文件中,具体表现为:
Unsupported CPU type!
UNREACHABLE executed at RuntimeDyldELF.cpp:1080!
Aborted
这种错误通常表明 LLVM 的后端无法正确识别或处理目标 CPU 架构的特性。值得注意的是,同样的代码在较旧的 LLVM 15.0.7 版本上虽然不会报错,但也无法正确生成 RISC-V 目标代码。
环境配置细节
出现问题的环境具有以下关键特征:
- 硬件平台:Banana Pi K1 开发板(RISC-V 64位架构)
- 操作系统:Banana Pi K1 专用 Linux 发行版
- 编译器工具链:
- LLVM 19.1.3(默认目标为 riscv64-linux-gnu)
- TVM 0.18.0
- 编译配置:
- 目标三元组:riscv64-linux-gnu
- CPU 类型:generic-rv64
- 架构标志:-march=rv64gc -mabi=lp64d
问题根源
经过深入分析,这个问题源于 TVM 默认使用的 MCJIT(Machine Code JIT)执行引擎与较新版本 LLVM 的兼容性问题。随着 LLVM 的发展,MCJIT 逐渐被弃用,转而推荐使用更现代的 ORC JIT(On-Request Compilation JIT)引擎。
解决方案
通过显式指定使用 ORC JIT 引擎,可以完美解决这个问题。具体实现方式是在 TVM 的目标字符串中添加 -jit=orcjit 参数:
# 基础RISC-V目标(不含向量扩展)
target = tvm.target.Target("llvm -jit=orcjit -mtriple=riscv64-linux-gnu -mcpu=generic-rv64 -mattr=+a,+c,+d,+f,+m")
# 支持RISC-V向量扩展的目标
target = tvm.target.Target("llvm -jit=orcjit -mtriple=riscv64-linux-gnu -mcpu=generic-rv64 -mattr=+a,+c,+d,+f,+m,+v")
技术原理
ORC JIT 是 LLVM 中新一代的即时编译框架,相比传统的 MCJIT 具有以下优势:
- 模块化设计,支持分层API
- 更好的并发编译支持
- 更灵活的内存管理
- 对现代CPU架构(如RISC-V)有更好的支持
在 RISC-V 这种相对较新的架构上,ORC JIT 能够正确处理 CPU 特性的检测和代码生成,避免了 MCJIT 中出现的兼容性问题。
实践建议
对于在 RISC-V 架构上使用 TVM 的开发者,建议:
- 使用较新版本的 LLVM(18.x 或更高)
- 始终显式指定使用 ORC JIT 引擎
- 根据实际硬件特性正确设置 mattr 参数
- 对于性能关键应用,可以考虑针对特定 RISC-V 实现(如 SpacemiT K1)进行专门的优化
未来展望
随着 RISC-V 生态的不断发展,TVM 社区也在积极改进对 RISC-V 的支持。未来版本可能会将 ORC JIT 设为默认执行引擎,并进一步优化针对 RISC-V 向量扩展(RVV)的代码生成能力。开发者可以期待在 RISC-V 平台上获得与 x86/ARM 相媲美的深度学习推理性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00