TVM 在 RISC-V 架构下的 JIT 编译问题与解决方案
问题背景
在将 Apache TVM 深度学习编译器部署到 RISC-V 架构的 Banana Pi K1 开发板时,开发者遇到了一个棘手的 CPU 兼容性问题。当使用 LLVM 19.1.3 和 TVM 0.18.0 版本时,系统会抛出"Unsupported CPU type"错误,并导致程序异常终止。
错误现象分析
错误信息明确指出问题发生在 LLVM 的 RuntimeDyldELF.cpp 文件中,具体表现为:
Unsupported CPU type!
UNREACHABLE executed at RuntimeDyldELF.cpp:1080!
Aborted
这种错误通常表明 LLVM 的后端无法正确识别或处理目标 CPU 架构的特性。值得注意的是,同样的代码在较旧的 LLVM 15.0.7 版本上虽然不会报错,但也无法正确生成 RISC-V 目标代码。
环境配置细节
出现问题的环境具有以下关键特征:
- 硬件平台:Banana Pi K1 开发板(RISC-V 64位架构)
- 操作系统:Banana Pi K1 专用 Linux 发行版
- 编译器工具链:
- LLVM 19.1.3(默认目标为 riscv64-linux-gnu)
- TVM 0.18.0
- 编译配置:
- 目标三元组:riscv64-linux-gnu
- CPU 类型:generic-rv64
- 架构标志:-march=rv64gc -mabi=lp64d
问题根源
经过深入分析,这个问题源于 TVM 默认使用的 MCJIT(Machine Code JIT)执行引擎与较新版本 LLVM 的兼容性问题。随着 LLVM 的发展,MCJIT 逐渐被弃用,转而推荐使用更现代的 ORC JIT(On-Request Compilation JIT)引擎。
解决方案
通过显式指定使用 ORC JIT 引擎,可以完美解决这个问题。具体实现方式是在 TVM 的目标字符串中添加 -jit=orcjit 参数:
# 基础RISC-V目标(不含向量扩展)
target = tvm.target.Target("llvm -jit=orcjit -mtriple=riscv64-linux-gnu -mcpu=generic-rv64 -mattr=+a,+c,+d,+f,+m")
# 支持RISC-V向量扩展的目标
target = tvm.target.Target("llvm -jit=orcjit -mtriple=riscv64-linux-gnu -mcpu=generic-rv64 -mattr=+a,+c,+d,+f,+m,+v")
技术原理
ORC JIT 是 LLVM 中新一代的即时编译框架,相比传统的 MCJIT 具有以下优势:
- 模块化设计,支持分层API
- 更好的并发编译支持
- 更灵活的内存管理
- 对现代CPU架构(如RISC-V)有更好的支持
在 RISC-V 这种相对较新的架构上,ORC JIT 能够正确处理 CPU 特性的检测和代码生成,避免了 MCJIT 中出现的兼容性问题。
实践建议
对于在 RISC-V 架构上使用 TVM 的开发者,建议:
- 使用较新版本的 LLVM(18.x 或更高)
- 始终显式指定使用 ORC JIT 引擎
- 根据实际硬件特性正确设置 mattr 参数
- 对于性能关键应用,可以考虑针对特定 RISC-V 实现(如 SpacemiT K1)进行专门的优化
未来展望
随着 RISC-V 生态的不断发展,TVM 社区也在积极改进对 RISC-V 的支持。未来版本可能会将 ORC JIT 设为默认执行引擎,并进一步优化针对 RISC-V 向量扩展(RVV)的代码生成能力。开发者可以期待在 RISC-V 平台上获得与 x86/ARM 相媲美的深度学习推理性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00