media-autobuild_suite项目中vvenc编译失败问题分析
问题背景
在media-autobuild_suite项目中,使用git方式构建vvenc视频编码器时出现了编译失败的情况。该问题主要发生在Windows平台下,使用Clang编译器进行构建时。
错误现象
编译过程中报错显示在InterSearch.cpp文件的2064行,错误信息为"variable length arrays in C++ are a Clang extension"。具体表现为Clang编译器不支持C++中的变长数组(VLA)特性,而vvenc代码中恰好在InterSearch.cpp文件中使用了这一特性。
技术分析
变长数组(Variable Length Arrays)是C99标准引入的特性,但在C++标准中并未正式支持。虽然GCC和Clang等编译器通过扩展支持了这一特性,但Clang较新版本(18及以上)默认会将其视为错误而非警告。
vvenc代码中使用了如下形式的变长数组:
Mv prevMv[m_BlkUniMvInfoBuffer->m_uniMvListMaxSize];
这种写法在C++中是非标准的,依赖于编译器的扩展支持。随着Clang版本的更新,编译器对标准合规性的要求变得更加严格,导致了编译失败。
解决方案
针对这一问题,社区提出了几种解决方案:
-
临时解决方案:移除编译选项中的-Werror标志,使编译器将警告而非错误处理。这种方法简单但不够规范,仅作为临时措施。
-
代码修改方案:vvenc上游项目最终采纳了修改代码的方案,将变长数组替换为更符合C++标准的实现方式。这种修改既解决了编译问题,又保持了代码的性能特性。
-
编译器版本控制:对于需要长期维护的系统,可以考虑锁定Clang版本在18以下,避免因编译器更新带来的兼容性问题。
技术建议
对于类似问题的预防和处理,建议:
-
在C++项目中避免使用变长数组这种非标准特性,改用std::vector或动态分配内存等标准方式。
-
定期更新项目依赖的第三方库,及时获取上游的兼容性修复。
-
在持续集成系统中设置多编译器测试,尽早发现潜在的兼容性问题。
-
对于性能敏感的代码段,在修改非标准实现时需要仔细评估性能影响。
结论
vvenc编译失败问题反映了C/C++跨编译器兼容性的挑战。通过这次问题的解决,不仅修复了当前构建问题,也为项目未来的跨平台兼容性提供了更好的保障。开发者应当重视代码的标准合规性,特别是在基础库和核心组件中,以确保项目在不同环境和工具链下的可构建性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00