VictoriaMetrics中vmagent处理Prometheus远程写入的性能优化实践
2025-05-15 07:53:20作者:段琳惟
问题背景
在使用VictoriaMetrics的vmagent组件作为指标数据收集代理时,当多个OpenTelemetry Collector同时通过Prometheus远程写入协议向vmagent发送数据时,系统出现了性能瓶颈。主要表现为:
- vmagent日志中频繁出现"unexpected EOF"错误
- CPU使用率持续接近100%
- OpenTelemetry Collector端出现"context deadline exceeded"错误
问题分析
错误根源
经过深入分析,发现这些问题的根本原因在于vmagent的并发处理能力不足。当大量客户端同时建立连接并发送数据时,vmagent内部存在几个关键瓶颈点:
- 写入并发限制:vmagent默认的
-maxConcurrentInserts参数限制了同时处理的写入请求数量 - 请求处理超时:当请求排队等待时间超过客户端设置的超时时间时,客户端会主动断开连接
- CPU资源不足:解压缩、解析和处理大量指标数据需要消耗大量CPU资源
错误链分析
- 当并发写入请求超过
maxConcurrentInserts限制时,新请求需要排队等待 - 如果等待时间超过OpenTelemetry Collector的默认超时设置(未配置时为0),客户端会断开连接
- 当vmagent开始处理这个请求时,连接已被关闭,导致"unexpected EOF"错误
- 客户端由于超时会记录"context deadline exceeded"错误
解决方案
1. 垂直扩展
增加vmagent实例的资源配额:
resources:
limits:
cpu: 12
memory: 12G
requests:
cpu: 12
memory: 12G
2. 水平扩展
部署多个vmagent实例,将OpenTelemetry Collector的写入请求分散到不同实例上。
3. 参数调优
调整关键性能参数:
- 增加
-maxConcurrentInserts值(需根据CPU资源情况调整) - 在OpenTelemetry Collector端显式设置合理的超时时间(如60秒)
4. 配置优化
OpenTelemetry Collector的推荐配置:
prometheusremotewrite:
endpoint: "https://vmagent-fqdn/api/v1/write"
timeout: 60s # 必须显式设置合理的超时时间
retry_on_failure:
enabled: false
remote_write_queue:
enabled: false
最佳实践
-
监控先行:密切监控以下指标
vmagent_http_requests_total{path="/api/v1/write"}vmagent_rows_inserted_total- CPU和内存使用率
- 并发插入数
-
渐进式调整:逐步增加
maxConcurrentInserts值,观察CPU使用率变化 -
客户端配置:
- 所有使用Prometheus远程写入协议的客户端都应设置合理的超时时间
- 考虑启用客户端的重试机制
-
架构设计:
- 对于大规模部署,建议采用分层架构,避免单个vmagent成为瓶颈
- 考虑使用负载均衡器分散写入请求
总结
通过本次性能优化实践,我们深入理解了vmagent在高并发Prometheus远程写入场景下的性能特点。关键点在于:
- 合理配置资源配额和并发参数
- 客户端和服务端的超时设置需要协调
- 监控是性能调优的基础
VictoriaMetrics团队已经针对这类问题改进了错误日志提示,使未来用户能更快识别和解决类似问题。对于大规模指标收集场景,建议在部署前进行充分的性能测试和容量规划。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869