GLM-4-Voice项目中的Moshi模型评测复现问题分析
2025-06-28 05:28:23作者:史锋燃Gardner
背景介绍
在THUDM团队开发的GLM-4-Voice项目中,研究人员对多种语音-文本预训练模型进行了系统性的评测比较。其中,Moshi模型作为对比基线之一,在技术报告中展示了5.40的评测分数。然而,社区开发者在尝试复现这一评测结果时遇到了困难,主要表现为模型仅回复"How are you"等开场白而无法正常回答问题。
问题现象
多位开发者在复现过程中发现,使用火山引擎seed TTS生成的音频输入Moshi模型后,模型输出存在以下异常情况:
- 绝大多数情况下仅回复标准开场白
- 极少数情况下能在开场白后给出正式回复
- 评测分数与论文报告结果存在显著差异
技术分析
经过深入分析,发现该问题主要源于Moshi模型的特殊设计特性:
- 全双工对话设计:Moshi模型专为全双工对话场景优化,要求每次对话必须从模型问候开始
- 输入时序要求:模型需要3秒的空白音频输入来完成初始问候环节
- 音频长度对齐:输入音频需要按1920样本的倍数进行填充对齐
解决方案
针对上述问题,项目团队提供了以下技术解决方案:
- 输入预处理:在用户音频前拼接3秒空白音频,确保模型完成问候环节
- 音频对齐处理:对输入音频进行零填充,使其长度为1920样本的整数倍
- 后处理优化:在实际评测中发现,在音频后部额外添加空白段能获得更好的响应效果
实现细节
具体实现时,需要修改Moshi模型的服务端处理逻辑。关键代码修改包括:
# 音频预处理示例
def encode(audio_path):
wav = load_wav(audio_path, sample_rate)
current_length = wav.shape[-1]
target_length = ((current_length - 1) // 1920 + 1) * 1920
if current_length < target_length:
padding = target_length - current_length
wav = torch.nn.functional.pad(wav, (0, padding))
wav = torch.nn.functional.pad(wav, (1920 * 50, 1920 * 100))
wav = wav.unsqueeze(0) # [B, T]
评测注意事项
在进行跨模型评测时,还需要注意以下技术细节:
- 语言一致性:对于英文评测,需限制模型仅输出英文token
- TTS工具选择:不同TTS工具生成的音频质量会影响最终评测结果
- 评测数据随机性:特别是知识类评测任务,随机采样可能导致结果波动
总结
GLM-4-Voice项目中对Moshi模型的评测复现问题,揭示了语音对话模型评测中的多个技术要点。通过正确处理模型特殊设计要求、优化音频预处理流程,开发者能够获得与论文报告一致的评测结果。这一案例也为语音-文本跨模态模型的评测实践提供了有价值的参考经验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217