GLM-4-Voice项目中的Moshi模型评测复现问题分析
2025-06-28 14:23:55作者:史锋燃Gardner
背景介绍
在THUDM团队开发的GLM-4-Voice项目中,研究人员对多种语音-文本预训练模型进行了系统性的评测比较。其中,Moshi模型作为对比基线之一,在技术报告中展示了5.40的评测分数。然而,社区开发者在尝试复现这一评测结果时遇到了困难,主要表现为模型仅回复"How are you"等开场白而无法正常回答问题。
问题现象
多位开发者在复现过程中发现,使用火山引擎seed TTS生成的音频输入Moshi模型后,模型输出存在以下异常情况:
- 绝大多数情况下仅回复标准开场白
- 极少数情况下能在开场白后给出正式回复
- 评测分数与论文报告结果存在显著差异
技术分析
经过深入分析,发现该问题主要源于Moshi模型的特殊设计特性:
- 全双工对话设计:Moshi模型专为全双工对话场景优化,要求每次对话必须从模型问候开始
- 输入时序要求:模型需要3秒的空白音频输入来完成初始问候环节
- 音频长度对齐:输入音频需要按1920样本的倍数进行填充对齐
解决方案
针对上述问题,项目团队提供了以下技术解决方案:
- 输入预处理:在用户音频前拼接3秒空白音频,确保模型完成问候环节
- 音频对齐处理:对输入音频进行零填充,使其长度为1920样本的整数倍
- 后处理优化:在实际评测中发现,在音频后部额外添加空白段能获得更好的响应效果
实现细节
具体实现时,需要修改Moshi模型的服务端处理逻辑。关键代码修改包括:
# 音频预处理示例
def encode(audio_path):
wav = load_wav(audio_path, sample_rate)
current_length = wav.shape[-1]
target_length = ((current_length - 1) // 1920 + 1) * 1920
if current_length < target_length:
padding = target_length - current_length
wav = torch.nn.functional.pad(wav, (0, padding))
wav = torch.nn.functional.pad(wav, (1920 * 50, 1920 * 100))
wav = wav.unsqueeze(0) # [B, T]
评测注意事项
在进行跨模型评测时,还需要注意以下技术细节:
- 语言一致性:对于英文评测,需限制模型仅输出英文token
- TTS工具选择:不同TTS工具生成的音频质量会影响最终评测结果
- 评测数据随机性:特别是知识类评测任务,随机采样可能导致结果波动
总结
GLM-4-Voice项目中对Moshi模型的评测复现问题,揭示了语音对话模型评测中的多个技术要点。通过正确处理模型特殊设计要求、优化音频预处理流程,开发者能够获得与论文报告一致的评测结果。这一案例也为语音-文本跨模态模型的评测实践提供了有价值的参考经验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1