Pts.js 开源项目教程
2024-09-25 19:29:47作者:卓炯娓
项目介绍
Pts 是一个基于 TypeScript/JavaScript 的可视化库,专为创意编码和数据可视化设计。它提供了强大的功能来帮助开发者在网页上创建动态视觉效果和交互式艺术作品。Pts 设计简洁,目前其压缩后的文件大小约为100KB,gzip压缩后更是减至30KB,适合各种Web项目。
项目快速启动
要立即开始使用Pts,你可以采取以下步骤:
安装与引入
直接引入
通过将Pts库加入到HTML中开始你的项目:
<script type="text/javascript" src="path/to/pts.js"></script>
或者使用CDN服务(例如cdnjs、jsdelivr或unpkg)。
使用npm安装
如果你的项目是现代开发环境,推荐通过npm安装:
npm install pts
然后,在你的代码中按需导入Pts的功能:
import { CanvasSpace, Pt, Group, Line } from 'pts';
快速示例
下面是一个简单的入门代码示例,展示如何创建一个画布空间并绘制一条线:
import { CanvasSpace, Form } from 'pts';
const space = new CanvasSpace("#sketch").setup({ size: [window.innerWidth, window.innerHeight] });
const form = new Form(space);
space.add({
update: (time, ftime) => {
// 清除画布
form.clear("white");
// 绘制一条从画布中心出发的线
let pos = new Pt(space.center).add(new Pt(0, 100).normalize().mult(200));
form.line(space.center, pos, "blue");
}
});
space.run();
记得替换#sketch为你页面中canvas元素的ID。
应用案例和最佳实践
Pts适用于多种创意编码项目,如动态背景、交互式艺术装置、数据可视化等。为了达到最佳实践,建议研究Pts的官方演示和指南,特别是其提供的各种形状、颜色处理以及动画控制的方法。对于初学者,从模仿简单示例开始,并逐渐过渡到更复杂的交互逻辑,是学习的好方法。
典型生态项目
- Pts-Starter-Kit: 提供了一个完整的起点,使用npm和Webpack搭建的项目模板。
- Pts-React-Example: 展示了Pts与React框架集成的方式,帮助你在React项目中轻松添加Pts的视觉效果。
- React-Pts-Canvas: 如果你使用React,这个组件可以作为一个基础,让你更快地集成Pts到React应用中。
通过这些项目和实例,开发者能够迅速掌握Pts的核心概念,并将其应用于自己的创意项目中。探索Pts的完整潜力,不断实验和创新是关键。
以上就是关于Pts.js的基本使用教程,希望能助你在创意编码领域一臂之力。快乐编码!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669