NeuralForecast项目在Mac设备上的MPS后端兼容性问题解析
问题背景
在使用NeuralForecast项目中的TFT、DeepAR、LSTM等时间序列预测模型时,Mac用户可能会遇到一个特定的运行时错误。这个错误与PyTorch在Mac设备上的Metal Performance Shaders(MPS)后端支持有关,而不是NeuralForecast项目本身的问题。
错误现象
当尝试在Mac设备上运行这些模型时,系统会抛出NotImplementedError异常,提示aten::nanmedian.dim_values操作在当前MPS设备上尚未实现。错误信息中明确指出了这是一个PyTorch在MPS后端支持上的限制。
根本原因
Mac设备从特定版本开始支持使用MPS作为PyTorch的后端,以利用苹果芯片的GPU加速能力。然而,并非所有PyTorch操作都已移植到MPS后端。当代码尝试执行一个MPS不支持的运算时,就会产生此类错误。
解决方案
PyTorch提供了优雅的回退机制来处理这种情况。以下是几种可行的解决方案:
-
环境变量设置法
可以通过设置环境变量PYTORCH_ENABLE_MPS_FALLBACK=1来启用自动回退机制。当遇到MPS不支持的运算时,PyTorch会自动切换到CPU执行。 -
Jupyter Notebook中的设置
如果是使用Jupyter Notebook,必须在第一个单元格中执行:%set_env PYTORCH_ENABLE_MPS_FALLBACK=1 -
命令行设置
在运行Python脚本前,可以通过终端设置环境变量:export PYTORCH_ENABLE_MPS_FALLBACK=1 python your_script.py -
Python脚本内设置
在Python脚本的开头添加:import os os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
注意事项
- 环境变量的设置必须在导入PyTorch或任何依赖PyTorch的库之前完成
- 使用回退机制会导致部分运算在CPU上执行,可能会影响性能
- 这个问题是暂时的,随着PyTorch对MPS后端支持的完善,未来版本可能会原生支持这些运算
替代方案
如果性能是关键考虑因素,可以考虑以下替代方案:
- 使用支持MPS后端的模型(如NBEATS/NHITS)
- 在云GPU环境或支持CUDA的设备上运行代码
- 完全禁用MPS后端,强制使用CPU(不推荐,会影响所有运算的性能)
总结
这个问题展示了在特定硬件环境下运行深度学习模型时可能遇到的兼容性挑战。理解底层框架的限制和掌握正确的配置方法对于顺利开展项目至关重要。随着PyTorch生态的不断发展,这类问题将逐渐减少,但在过渡期,掌握这些变通方案仍然很有价值。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00