NeuralForecast项目在Mac设备上的MPS后端兼容性问题解析
问题背景
在使用NeuralForecast项目中的TFT、DeepAR、LSTM等时间序列预测模型时,Mac用户可能会遇到一个特定的运行时错误。这个错误与PyTorch在Mac设备上的Metal Performance Shaders(MPS)后端支持有关,而不是NeuralForecast项目本身的问题。
错误现象
当尝试在Mac设备上运行这些模型时,系统会抛出NotImplementedError异常,提示aten::nanmedian.dim_values操作在当前MPS设备上尚未实现。错误信息中明确指出了这是一个PyTorch在MPS后端支持上的限制。
根本原因
Mac设备从特定版本开始支持使用MPS作为PyTorch的后端,以利用苹果芯片的GPU加速能力。然而,并非所有PyTorch操作都已移植到MPS后端。当代码尝试执行一个MPS不支持的运算时,就会产生此类错误。
解决方案
PyTorch提供了优雅的回退机制来处理这种情况。以下是几种可行的解决方案:
-
环境变量设置法
可以通过设置环境变量PYTORCH_ENABLE_MPS_FALLBACK=1来启用自动回退机制。当遇到MPS不支持的运算时,PyTorch会自动切换到CPU执行。 -
Jupyter Notebook中的设置
如果是使用Jupyter Notebook,必须在第一个单元格中执行:%set_env PYTORCH_ENABLE_MPS_FALLBACK=1 -
命令行设置
在运行Python脚本前,可以通过终端设置环境变量:export PYTORCH_ENABLE_MPS_FALLBACK=1 python your_script.py -
Python脚本内设置
在Python脚本的开头添加:import os os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
注意事项
- 环境变量的设置必须在导入PyTorch或任何依赖PyTorch的库之前完成
- 使用回退机制会导致部分运算在CPU上执行,可能会影响性能
- 这个问题是暂时的,随着PyTorch对MPS后端支持的完善,未来版本可能会原生支持这些运算
替代方案
如果性能是关键考虑因素,可以考虑以下替代方案:
- 使用支持MPS后端的模型(如NBEATS/NHITS)
- 在云GPU环境或支持CUDA的设备上运行代码
- 完全禁用MPS后端,强制使用CPU(不推荐,会影响所有运算的性能)
总结
这个问题展示了在特定硬件环境下运行深度学习模型时可能遇到的兼容性挑战。理解底层框架的限制和掌握正确的配置方法对于顺利开展项目至关重要。随着PyTorch生态的不断发展,这类问题将逐渐减少,但在过渡期,掌握这些变通方案仍然很有价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00