在kube-prometheus中修改kube-state-metrics的relabel配置
背景介绍
kube-prometheus是一个基于Prometheus Operator的Kubernetes监控解决方案,它集成了Prometheus、Alertmanager、Grafana等组件,并提供了开箱即用的监控配置。其中kube-state-metrics是监控Kubernetes集群状态的核心组件之一。
在实际生产环境中,我们经常需要对采集的指标进行二次处理,比如添加自定义标签、修改标签值等。这些操作通常通过Prometheus的relabel_config配置来实现。
问题场景
在已部署的kube-prometheus生产环境中,用户希望对kube-state-metrics采集的指标添加额外的标签,以便更好地管理多集群指标。具体需求是:
- 基于外部JSON存储的键值关系,为特定指标添加新标签
- 修改现有的kube-state-metrics作业的relabel配置
- 确保修改能够持久化,不会因重启而丢失
解决方案
1. 理解kube-prometheus的配置架构
在kube-prometheus中,Prometheus的配置是通过Prometheus Operator自动生成的。具体到每个监控目标的采集配置,是通过ServiceMonitor或PodMonitor这些CRD(自定义资源)来定义的。
对于kube-state-metrics,其采集配置存储在名为"kube-state-metrics"的ServiceMonitor资源中。
2. 修改ServiceMonitor配置
要修改kube-state-metrics的relabel配置,需要编辑对应的ServiceMonitor资源。以下是具体步骤:
-
获取当前的ServiceMonitor配置:
kubectl get -n monitoring servicemonitors kube-state-metrics -o yaml -
编辑ServiceMonitor,添加relabelings配置:
spec: endpoints: - port: http relabelings: - action: labeldrop regex: (pod|service|endpoint|namespace) - sourceLabels: [app] regex: nginx replacement: 'my-nginx-test' targetLabel: module - sourceLabels: [label_app] regex: nginx replacement: 'my-nginx-test-label' targetLabel: module
3. 配置详解
上述配置中,我们添加了几个relabel规则:
- labeldrop:删除匹配正则表达式的标签(pod、service、endpoint、namespace)
- 标签替换:当app标签值为nginx时,添加module标签并设置值为my-nginx-test
- 标签替换:当label_app标签值为nginx时,添加module标签并设置值为my-nginx-test-label
4. 验证配置生效
修改完成后,可以通过以下方式验证配置是否生效:
-
进入Prometheus容器查看生成的配置文件:
kubectl exec -n monitoring -it prometheus-k8s-0 -- cat /etc/prometheus/config_out/prometheus.env.yaml -
在Prometheus UI中检查target页面,确认kube-state-metrics的配置已更新
-
查询具体指标,确认新标签已添加
注意事项
-
配置更新延迟:Prometheus Operator需要一些时间来处理ServiceMonitor的变更并更新Prometheus配置,通常需要等待1-2分钟
-
指标缓存:已经采集的指标不会自动更新标签,只有新采集的指标会应用新的relabel规则
-
多集群管理:如果需要在多集群环境中统一管理标签,可以考虑使用Prometheus的external_labels配置或在查询时使用聚合操作
-
配置持久化:通过修改ServiceMonitor资源的方式可以确保配置持久化,即使Prometheus实例重启也不会丢失
高级用法
除了基本的标签操作,relabel_config还支持更多高级功能:
- 条件判断:可以结合多个标签值进行复杂条件判断
- 哈希处理:对标签值进行哈希处理,用于分片等场景
- 默认值设置:当标签不存在时设置默认值
- 标签映射:基于外部文件动态映射标签值
这些高级用法可以帮助实现更复杂的监控场景需求。
总结
通过修改kube-prometheus中kube-state-metrics的ServiceMonitor配置,我们可以灵活地控制指标的标签处理逻辑。这种方法不仅适用于添加新标签,还可以用于删除、修改现有标签,实现指标数据的二次加工和标准化,为多集群监控管理提供了良好的基础。
在实际操作中,建议先在测试环境验证配置变更,确认无误后再应用到生产环境。同时,对于复杂的relabel规则,可以通过Prometheus的Relabel Debug功能进行调试,确保规则按预期工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00