Django-Styleguide项目中的API设计模式解析
2025-06-07 02:37:50作者:伍霜盼Ellen
在Django开发中,API设计是一个关键环节,尤其是当开发者希望避免DRF(Django REST Framework)中通用视图(Generic Views)和视图集(ViewSets)带来的业务逻辑分散问题时。Django-Styleguide项目提供了一套清晰的API设计规范,帮助开发者构建更结构化和可维护的API代码。
核心设计理念
Django-Styleguide提倡将API逻辑组织为独立的API类,每个类对应特定的HTTP方法。这种设计模式与传统的DRF视图类不同,它更强调职责分离和代码组织。
典型CRUD实现结构
一个完整的CRUD API实现通常包含以下几个关键组件:
- API视图类:负责处理HTTP请求和响应
- 序列化器:处理数据验证和转换
- 选择器(Selectors):封装数据查询逻辑
- 服务层(Services):处理业务逻辑
具体实现示例
以下是一个用户管理API的典型实现结构:
# 用户列表API
class UserListApi(api.Api):
def get(self, request):
filters = UserFilters(request.query_params)
users = UserSelector.get_users(filters=filters)
serializer = UserListSerializer(users, many=True)
return Response(serializer.data)
def post(self, request):
serializer = UserCreateSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
user = UserService.create_user(**serializer.validated_data)
return Response(UserDetailSerializer(user).data, status=201)
# 用户详情API
class UserDetailApi(api.Api):
def get(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
return Response(UserDetailSerializer(user).data)
def put(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
serializer = UserUpdateSerializer(user, data=request.data)
serializer.is_valid(raise_exception=True)
user = UserService.update_user(user=user, **serializer.validated_data)
return Response(UserDetailSerializer(user).data)
def delete(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
UserService.delete_user(user=user)
return Response(status=204)
各层职责详解
-
API层:
- 处理HTTP请求和响应
- 协调各组件工作流程
- 不包含业务逻辑
-
序列化器层:
- 数据验证
- 请求/响应数据转换
- 通常分为创建、更新、列表、详情等不同用途的序列化器
-
选择器层:
- 封装所有数据查询逻辑
- 可以包含过滤、排序、分页等复杂查询
- 提高查询逻辑的复用性
-
服务层:
- 包含核心业务逻辑
- 处理创建、更新、删除等操作
- 可以调用模型方法和选择器
优势分析
这种分层架构相比传统DRF视图有以下优势:
- 更好的关注点分离:每层有明确职责
- 更高的可测试性:各组件可独立测试
- 更强的可维护性:业务逻辑集中管理
- 更好的复用性:服务层和选择器可在不同API间共享
实际应用建议
对于初学者,建议从简单的CRUD开始实践这种模式:
- 先定义模型和基本序列化器
- 创建选择器处理基本查询
- 实现服务层处理创建/更新逻辑
- 最后组合成完整API类
随着项目复杂度增加,可以逐步引入更高级的功能如缓存、权限控制、批量操作等,这些都可以在现有架构基础上进行扩展而不破坏整体结构。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.61 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
116
149
暂无简介
Dart
578
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
295
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.14 K