Django-Styleguide项目中的API设计模式解析
2025-06-07 13:27:31作者:伍霜盼Ellen
在Django开发中,API设计是一个关键环节,尤其是当开发者希望避免DRF(Django REST Framework)中通用视图(Generic Views)和视图集(ViewSets)带来的业务逻辑分散问题时。Django-Styleguide项目提供了一套清晰的API设计规范,帮助开发者构建更结构化和可维护的API代码。
核心设计理念
Django-Styleguide提倡将API逻辑组织为独立的API类,每个类对应特定的HTTP方法。这种设计模式与传统的DRF视图类不同,它更强调职责分离和代码组织。
典型CRUD实现结构
一个完整的CRUD API实现通常包含以下几个关键组件:
- API视图类:负责处理HTTP请求和响应
- 序列化器:处理数据验证和转换
- 选择器(Selectors):封装数据查询逻辑
- 服务层(Services):处理业务逻辑
具体实现示例
以下是一个用户管理API的典型实现结构:
# 用户列表API
class UserListApi(api.Api):
def get(self, request):
filters = UserFilters(request.query_params)
users = UserSelector.get_users(filters=filters)
serializer = UserListSerializer(users, many=True)
return Response(serializer.data)
def post(self, request):
serializer = UserCreateSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
user = UserService.create_user(**serializer.validated_data)
return Response(UserDetailSerializer(user).data, status=201)
# 用户详情API
class UserDetailApi(api.Api):
def get(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
return Response(UserDetailSerializer(user).data)
def put(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
serializer = UserUpdateSerializer(user, data=request.data)
serializer.is_valid(raise_exception=True)
user = UserService.update_user(user=user, **serializer.validated_data)
return Response(UserDetailSerializer(user).data)
def delete(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
UserService.delete_user(user=user)
return Response(status=204)
各层职责详解
-
API层:
- 处理HTTP请求和响应
- 协调各组件工作流程
- 不包含业务逻辑
-
序列化器层:
- 数据验证
- 请求/响应数据转换
- 通常分为创建、更新、列表、详情等不同用途的序列化器
-
选择器层:
- 封装所有数据查询逻辑
- 可以包含过滤、排序、分页等复杂查询
- 提高查询逻辑的复用性
-
服务层:
- 包含核心业务逻辑
- 处理创建、更新、删除等操作
- 可以调用模型方法和选择器
优势分析
这种分层架构相比传统DRF视图有以下优势:
- 更好的关注点分离:每层有明确职责
- 更高的可测试性:各组件可独立测试
- 更强的可维护性:业务逻辑集中管理
- 更好的复用性:服务层和选择器可在不同API间共享
实际应用建议
对于初学者,建议从简单的CRUD开始实践这种模式:
- 先定义模型和基本序列化器
- 创建选择器处理基本查询
- 实现服务层处理创建/更新逻辑
- 最后组合成完整API类
随着项目复杂度增加,可以逐步引入更高级的功能如缓存、权限控制、批量操作等,这些都可以在现有架构基础上进行扩展而不破坏整体结构。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355