Django-Styleguide项目中的API设计模式解析
2025-06-07 13:59:18作者:伍霜盼Ellen
在Django开发中,API设计是一个关键环节,尤其是当开发者希望避免DRF(Django REST Framework)中通用视图(Generic Views)和视图集(ViewSets)带来的业务逻辑分散问题时。Django-Styleguide项目提供了一套清晰的API设计规范,帮助开发者构建更结构化和可维护的API代码。
核心设计理念
Django-Styleguide提倡将API逻辑组织为独立的API类,每个类对应特定的HTTP方法。这种设计模式与传统的DRF视图类不同,它更强调职责分离和代码组织。
典型CRUD实现结构
一个完整的CRUD API实现通常包含以下几个关键组件:
- API视图类:负责处理HTTP请求和响应
- 序列化器:处理数据验证和转换
- 选择器(Selectors):封装数据查询逻辑
- 服务层(Services):处理业务逻辑
具体实现示例
以下是一个用户管理API的典型实现结构:
# 用户列表API
class UserListApi(api.Api):
def get(self, request):
filters = UserFilters(request.query_params)
users = UserSelector.get_users(filters=filters)
serializer = UserListSerializer(users, many=True)
return Response(serializer.data)
def post(self, request):
serializer = UserCreateSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
user = UserService.create_user(**serializer.validated_data)
return Response(UserDetailSerializer(user).data, status=201)
# 用户详情API
class UserDetailApi(api.Api):
def get(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
return Response(UserDetailSerializer(user).data)
def put(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
serializer = UserUpdateSerializer(user, data=request.data)
serializer.is_valid(raise_exception=True)
user = UserService.update_user(user=user, **serializer.validated_data)
return Response(UserDetailSerializer(user).data)
def delete(self, request, user_id):
user = UserSelector.get_user_by_id(user_id=user_id)
UserService.delete_user(user=user)
return Response(status=204)
各层职责详解
-
API层:
- 处理HTTP请求和响应
- 协调各组件工作流程
- 不包含业务逻辑
-
序列化器层:
- 数据验证
- 请求/响应数据转换
- 通常分为创建、更新、列表、详情等不同用途的序列化器
-
选择器层:
- 封装所有数据查询逻辑
- 可以包含过滤、排序、分页等复杂查询
- 提高查询逻辑的复用性
-
服务层:
- 包含核心业务逻辑
- 处理创建、更新、删除等操作
- 可以调用模型方法和选择器
优势分析
这种分层架构相比传统DRF视图有以下优势:
- 更好的关注点分离:每层有明确职责
- 更高的可测试性:各组件可独立测试
- 更强的可维护性:业务逻辑集中管理
- 更好的复用性:服务层和选择器可在不同API间共享
实际应用建议
对于初学者,建议从简单的CRUD开始实践这种模式:
- 先定义模型和基本序列化器
- 创建选择器处理基本查询
- 实现服务层处理创建/更新逻辑
- 最后组合成完整API类
随着项目复杂度增加,可以逐步引入更高级的功能如缓存、权限控制、批量操作等,这些都可以在现有架构基础上进行扩展而不破坏整体结构。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5