Apache Sling 分布式内容整合测试(Distribution Integration Tests)教程
1. 项目目录结构及介绍
在 sling-org-apache-sling-distribution-it 项目中,主要的目录结构如下:
-
src
包含源代码和资源文件,测试相关的实现都在这个目录下。-
main
- java: 存放Java源代码,用于实现测试逻辑。
- resources: 存放资源文件,如配置文件等。
-
test
- java: 测试相关的Java源代码。
- resources: 测试所需的资源文件。
-
-
target: Maven构建后的目标文件夹,包括编译后的类文件以及打包后的JAR。
2. 项目的启动文件介绍
该项目的启动是通过Maven插件进行的,使用了sling-maven-plugin来运行Sling Launchpad。在Maven构建过程中,会启动两个实例,一个作为作者模式(author),另一个作为发布模式(publish)。相关配置通常在Maven命令行参数或者POM.xml文件中指定,例如:
$[project build directory]/author -p $JAREXEC_SERVER_PORT$ -Dsling.run.modes=author
$[project build directory]/publish -p $JAREXEC_SERVER_PORT$ -Dsling.run.modes=publish
这里-p指定了服务器端口号,-Dsling.run.modes定义了运行模式。
3. 项目的配置文件介绍
项目中的配置文件主要用于设置Sling分布代理和包导出器。例如,org.apache.sling.distribution.agent.impl.SyncDistributionAgentFactory 和 org.apache.sling.distribution.packaging.impl.exporter.AgentDistributionPackageExporterFactory 类的配置,用于定义不同数据同步队列(如dc2queue和dc3queue)以及它们对应的代理目标和队列名称。
配置可能存在于src/main/resources或src/test/resources目录下的配置文件中,也可能以系统属性的形式传递给Sling实例。这些配置会影响如何在不同的Sling实例之间进行内容的导入和导出。
例如,以下配置创建了一个名为“interdcsync”的同步分布代理,它将内容导出到其他数据中心的特定队列:
org.apache.sling.distribution.agent.impl.SyncDistributionAgentFactory-interdcsync.name="interdcsync"
org.apache.sling.distribution.agent.impl.SyncDistributionAgentFactory-interdcsync.packageExporter.endpoints=["http://localhost:5502/libs/sling/distribution/services/exporters/dc1queue"]
请注意,实际的配置可能会因具体需求而有所不同,上述只是一个基本示例。
通过了解这些核心部分,你可以开始配置并运行Apache Sling Distribution Integration Tests,以测试在分布式环境中内容的分布和同步功能。记得根据项目实际情况调整上述配置和启动参数。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00