Visual-RFT项目在Flower102数据集上的复现经验与技术分析
2025-07-10 09:15:47作者:虞亚竹Luna
背景介绍
Visual-RFT是一个基于视觉语言模型的强化学习框架,旨在通过少量样本(few-shot)学习提升模型在视觉分类任务中的表现。该项目采用了Qwen2-VL-2B-Instruct等大型视觉语言模型作为基础,通过GRPO(Group Relative Policy Optimization)算法进行微调。
复现过程中的关键发现
初始复现结果差异
在Flower102数据集(包含102类花卉)的4-shot设置下,初始复现结果(准确率8.93%)与论文报告结果存在显著差距。经过排查发现,问题主要出在提示词(prompt)设计上。
提示词优化方案
原始提示词可能未能有效引导模型输出结构化结果。改进后的提示词明确要求模型:
- 在标签中输出推理过程
- 在标签中输出最终答案
- 严格遵循指定格式
优化后的提示词显著提升了模型表现,准确率达到69.27%,与预期结果相符。
技术实现要点
训练配置
项目采用分布式训练框架,关键参数包括:
- 基础模型:Qwen2-VL-2B-Instruct
- 批处理大小:1(per device)
- 梯度累积步数:2
- 训练轮次:8
- 优化算法:GRPO
- 硬件加速:BF16混合精度训练
数据处理
- 使用4-shot学习设置
- 最大像素数限制为401408
- 每轮生成8个样本增强数据多样性
经验总结
-
提示工程的重要性:在视觉语言模型中,提示词设计对模型表现有决定性影响,需要明确输出格式要求。
-
分布式训练技巧:项目采用torchrun进行多节点分布式训练,需要注意主节点地址和端口配置。
-
调试建议:开启DEBUG_MODE可以观察模型在强化学习过程中的rollout情况,有助于问题诊断。
-
性能优化:使用flash_attention_2实现注意力机制,能显著提升训练效率。
应用价值
该技术方案特别适合小样本视觉分类场景,如:
- 植物种类识别
- 医学影像分析
- 工业质检等专业领域
通过合理的提示工程和强化学习微调,可以在保持预训练模型通用能力的同时,显著提升其在特定领域的表现。
后续研究方向
- 探索更多样化的提示词模板对模型性能的影响
- 研究不同few-shot设置下的表现变化规律
- 优化GRPO算法在视觉任务中的超参数配置
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0290Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
101
610

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0