Visual-RFT项目在Flower102数据集上的复现经验与技术分析
2025-07-10 06:48:03作者:虞亚竹Luna
背景介绍
Visual-RFT是一个基于视觉语言模型的强化学习框架,旨在通过少量样本(few-shot)学习提升模型在视觉分类任务中的表现。该项目采用了Qwen2-VL-2B-Instruct等大型视觉语言模型作为基础,通过GRPO(Group Relative Policy Optimization)算法进行微调。
复现过程中的关键发现
初始复现结果差异
在Flower102数据集(包含102类花卉)的4-shot设置下,初始复现结果(准确率8.93%)与论文报告结果存在显著差距。经过排查发现,问题主要出在提示词(prompt)设计上。
提示词优化方案
原始提示词可能未能有效引导模型输出结构化结果。改进后的提示词明确要求模型:
- 在标签中输出推理过程
- 在标签中输出最终答案
- 严格遵循指定格式
优化后的提示词显著提升了模型表现,准确率达到69.27%,与预期结果相符。
技术实现要点
训练配置
项目采用分布式训练框架,关键参数包括:
- 基础模型:Qwen2-VL-2B-Instruct
- 批处理大小:1(per device)
- 梯度累积步数:2
- 训练轮次:8
- 优化算法:GRPO
- 硬件加速:BF16混合精度训练
数据处理
- 使用4-shot学习设置
- 最大像素数限制为401408
- 每轮生成8个样本增强数据多样性
经验总结
-
提示工程的重要性:在视觉语言模型中,提示词设计对模型表现有决定性影响,需要明确输出格式要求。
-
分布式训练技巧:项目采用torchrun进行多节点分布式训练,需要注意主节点地址和端口配置。
-
调试建议:开启DEBUG_MODE可以观察模型在强化学习过程中的rollout情况,有助于问题诊断。
-
性能优化:使用flash_attention_2实现注意力机制,能显著提升训练效率。
应用价值
该技术方案特别适合小样本视觉分类场景,如:
- 植物种类识别
- 医学影像分析
- 工业质检等专业领域
通过合理的提示工程和强化学习微调,可以在保持预训练模型通用能力的同时,显著提升其在特定领域的表现。
后续研究方向
- 探索更多样化的提示词模板对模型性能的影响
- 研究不同few-shot设置下的表现变化规律
- 优化GRPO算法在视觉任务中的超参数配置
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219