GLM-4项目中的ValueError问题分析与解决方案
问题背景
在使用GLM-4项目进行多模态推理时,开发者可能会遇到一个常见的错误:"ValueError: too many values to unpack (expected 2)"。这个问题通常出现在使用transformers库加载GLM-4v-9b模型并进行图像描述生成任务时。
错误现象分析
当开发者尝试运行以下典型代码时会出现此错误:
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True,
return_tensors="pt", return_dict=True)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
错误发生在模型生成阶段,具体报错信息表明在模型内部处理缓存时出现了值解包不匹配的情况。
根本原因
这个问题主要源于transformers库版本与GLM-4v-9b模型之间的兼容性问题。具体来说:
-
版本不匹配:GLM-4v-9b模型需要特定版本的transformers库支持,旧版本(如4.38)中的缓存处理机制与模型不兼容。
-
缓存解包错误:在模型生成过程中,
_extract_past_from_model_output方法期望返回两个值(缓存名称和缓存内容),但实际返回的值数量不匹配。
解决方案
方法一:升级transformers库
最直接的解决方案是将transformers库升级到兼容版本(4.44或更高):
pip install transformers==4.44
升级后,模型的缓存处理机制将与GLM-4v-9b的要求匹配,解决值解包错误。
方法二:本地模型加载
如果网络环境受限,无法直接从HuggingFace Hub下载模型,可以采用本地加载方式:
- 首先下载完整的GLM-4v-9b模型文件到本地目录
- 修改代码中的模型路径为本地路径
model_path = "/path/to/local/glm-4v-9b"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
最佳实践建议
-
环境隔离:建议使用虚拟环境(如conda或venv)管理Python依赖,避免版本冲突。
-
版本检查:在运行代码前,检查关键库的版本:
import transformers print(transformers.__version__) -
错误处理:添加适当的错误处理逻辑,捕获网络连接问题:
try: tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True) except Exception as e: print(f"加载tokenizer失败: {e}") # 尝试本地回退方案 -
资源监控:GLM-4v-9b是大型模型,运行时监控GPU内存使用情况,必要时调整batch size或序列长度。
总结
GLM-4项目中的"ValueError: too many values to unpack"错误通常可以通过升级transformers库到兼容版本解决。对于网络受限的环境,采用本地模型加载是可行的替代方案。理解模型与库版本之间的依赖关系,建立规范的开发环境,能够有效避免此类兼容性问题,确保多模态推理任务的顺利执行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00