lt3sd 的安装和配置教程
2025-05-28 08:11:24作者:彭桢灵Jeremy
1. 项目基础介绍和主要编程语言
LT3SD(Latent Trees for 3D Scene Diffusion)是一个开源项目,旨在通过先进的生成模型实现高质量的3D场景生成。该项目使用了一种新颖的潜在树表示方法,可以有效地编码3D场景中的低频几何和高频细节。主要编程语言为Python。
2. 项目使用的关键技术和框架
该项目采用以下关键技术和框架:
- 潜在树表示:有效编码3D场景中的不同频率的几何和细节。
- 扩散模型:在潜在3D场景空间中学习生成过程,以创建复杂的3D场景结构。
- Patch-based生成:通过在多个场景块上共享扩散生成过程来合成任意大小的输出3D场景。
- 深度学习框架:可能使用了PyTorch等深度学习框架进行模型的训练和推理。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖项:
- Python 3.10
- Conda(或Anaconda)
- Git
安装步骤
-
克隆项目仓库
打开命令行界面,运行以下命令以克隆LT3SD的GitHub仓库:
git clone --recursive https://github.com/quan-meng/lt3sd.git -
创建Conda环境
在命令行中,创建并激活一个名为
lt3sd的新Conda环境:conda create --name lt3sd python=3.10 conda activate lt3sd -
安装项目依赖
在激活的环境中,安装项目所需的依赖项:
pip install -r requirements.txt -
数据预处理
在开始训练模型之前,需要申请并下载
3D-FUTURE数据集,并解压相应的文件。请根据项目说明修改配置文件中的输出目录,然后运行以下命令来导出场景网格和计算TUDF体素网格:python data/export_mesh.py export_houses --output_semantic_bbox --add_floor cd third_parties/sdf-gen mkdir build && cd build cmake .. make cp -r bin/sdf_gen ../../../tools python data/export_volume.py --voxel_size 0.022 --num_level 4 --with_bbox注意:一些具有不正确家具规模的场景可能会自动跳过并导致内存不足错误。
-
模型训练
根据项目说明,模型的训练分为两个阶段。每个阶段的具体训练命令和所需的GPU内存都在项目的README文件中有详细说明。这里是一个基本的训练命令示例:
python first_stage.py [训练参数] python second_stage.py [训练参数]请根据您的具体情况替换命令中的[训练参数]。
通过以上步骤,您应该能够成功安装和配置LT3SD项目。如果您遇到任何问题,可以查看项目文档或向项目维护者寻求帮助。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210