机器学习项目笔记:决策树原理与实现详解
2025-06-07 08:29:32作者:钟日瑜
决策树基础概念
决策树是机器学习中一种简单而强大的监督学习算法,它通过树状结构对数据进行分类或回归。在机器学习项目中,决策树因其直观易懂、可解释性强等特点,常被作为基础模型使用。
信息论基础
信息熵(香农熵)
信息熵是决策树算法的核心概念之一,它量化了信息的不确定性。在决策树中,我们使用信息熵来衡量数据集的纯度:
其中:
- 表示数据集D的信息熵
- 表示第k类样本在数据集D中所占比例
- y 表示类别总数
信息熵的取值范围为 ,当所有样本属于同一类别时熵最小(为0),当各类别均匀分布时熵最大。
相对熵与交叉熵
相对熵(KL散度)衡量了两个概率分布之间的差异:
在机器学习中,我们通常使用交叉熵作为损失函数:
交叉熵在决策树中具有重要意义,特别是在评估模型预测与真实标签之间的差异时。
决策树构建关键指标
信息增益
信息增益是决策树选择划分属性的重要标准:
信息增益 = 父节点的信息熵 - 子节点的加权平均信息熵
信息增益越大,意味着使用该属性进行划分带来的"纯度提升"越大。
基尼指数
CART算法使用基尼指数来选择最优划分属性:
基尼指数反映了从数据集中随机抽取两个样本,其类别标记不一致的概率。基尼指数越小,数据集纯度越高。
决策树实现细节
剪枝技术
决策树容易过拟合,剪枝是防止过拟合的关键技术:
-
预剪枝:在树构建过程中进行剪枝
- 优点:减少不必要的计算,训练速度快
- 缺点:可能欠拟合,无法恢复被剪枝的分支
-
后剪枝:在完整树构建后进行剪枝
- 优点:保留更多分支机会,泛化性能通常更好
- 缺点:计算量大,训练时间长
Python实现示例
以下是计算香农熵的Python实现代码:
import numpy as np
import pandas as pd
from collections import Counter
def calcShannonEnt(data):
"""计算数据集的信息熵
参数:
data -- 包含特征和标签的DataFrame
返回:
shannonEnt -- 计算得到的信息熵值
"""
# 获取标签列数据
labels = data[data.columns.values[-1]]
# 统计各类别出现次数
labelCounts = Counter(labels)
# 计算信息熵
shannonEnt = 0.0
dataLen = len(data)
for key in labelCounts:
pro = labelCounts[key] / dataLen
shannonEnt -= pro * np.log2(pro)
return shannonEnt
# 示例使用
data = pd.read_csv("watermelon_3a.csv")
res = calcShannonEnt(data)
print("香农熵为:", res)
输出结果示例:
香农熵为: 0.9975025463691153
这段代码展示了如何计算数据集的信息熵,这是构建决策树的基础步骤。在实际应用中,我们还需要实现信息增益计算、属性选择、树构建等完整流程。
决策树应用建议
- 数据预处理:决策树对数据尺度不敏感,但仍需处理缺失值和类别型变量
- 参数调优:合理设置树的最大深度、叶节点最小样本数等参数
- 模型评估:使用交叉验证评估模型性能,避免过拟合
- 特征重要性:利用决策树提供的特征重要性进行特征选择
决策树虽然简单,但通过集成方法(如随机森林、GBDT等)可以构建更强大的模型,是机器学习项目中的重要基础。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868