机器学习项目笔记:决策树原理与实现详解
2025-06-07 20:58:24作者:钟日瑜
决策树基础概念
决策树是机器学习中一种简单而强大的监督学习算法,它通过树状结构对数据进行分类或回归。在机器学习项目中,决策树因其直观易懂、可解释性强等特点,常被作为基础模型使用。
信息论基础
信息熵(香农熵)
信息熵是决策树算法的核心概念之一,它量化了信息的不确定性。在决策树中,我们使用信息熵来衡量数据集的纯度:
其中:
- 表示数据集D的信息熵
- 表示第k类样本在数据集D中所占比例
- y 表示类别总数
信息熵的取值范围为 ,当所有样本属于同一类别时熵最小(为0),当各类别均匀分布时熵最大。
相对熵与交叉熵
相对熵(KL散度)衡量了两个概率分布之间的差异:
在机器学习中,我们通常使用交叉熵作为损失函数:
交叉熵在决策树中具有重要意义,特别是在评估模型预测与真实标签之间的差异时。
决策树构建关键指标
信息增益
信息增益是决策树选择划分属性的重要标准:
信息增益 = 父节点的信息熵 - 子节点的加权平均信息熵
信息增益越大,意味着使用该属性进行划分带来的"纯度提升"越大。
基尼指数
CART算法使用基尼指数来选择最优划分属性:
基尼指数反映了从数据集中随机抽取两个样本,其类别标记不一致的概率。基尼指数越小,数据集纯度越高。
决策树实现细节
剪枝技术
决策树容易过拟合,剪枝是防止过拟合的关键技术:
-
预剪枝:在树构建过程中进行剪枝
- 优点:减少不必要的计算,训练速度快
- 缺点:可能欠拟合,无法恢复被剪枝的分支
-
后剪枝:在完整树构建后进行剪枝
- 优点:保留更多分支机会,泛化性能通常更好
- 缺点:计算量大,训练时间长
Python实现示例
以下是计算香农熵的Python实现代码:
import numpy as np
import pandas as pd
from collections import Counter
def calcShannonEnt(data):
"""计算数据集的信息熵
参数:
data -- 包含特征和标签的DataFrame
返回:
shannonEnt -- 计算得到的信息熵值
"""
# 获取标签列数据
labels = data[data.columns.values[-1]]
# 统计各类别出现次数
labelCounts = Counter(labels)
# 计算信息熵
shannonEnt = 0.0
dataLen = len(data)
for key in labelCounts:
pro = labelCounts[key] / dataLen
shannonEnt -= pro * np.log2(pro)
return shannonEnt
# 示例使用
data = pd.read_csv("watermelon_3a.csv")
res = calcShannonEnt(data)
print("香农熵为:", res)
输出结果示例:
香农熵为: 0.9975025463691153
这段代码展示了如何计算数据集的信息熵,这是构建决策树的基础步骤。在实际应用中,我们还需要实现信息增益计算、属性选择、树构建等完整流程。
决策树应用建议
- 数据预处理:决策树对数据尺度不敏感,但仍需处理缺失值和类别型变量
- 参数调优:合理设置树的最大深度、叶节点最小样本数等参数
- 模型评估:使用交叉验证评估模型性能,避免过拟合
- 特征重要性:利用决策树提供的特征重要性进行特征选择
决策树虽然简单,但通过集成方法(如随机森林、GBDT等)可以构建更强大的模型,是机器学习项目中的重要基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896