ClickPy项目中的ClickHouse数据库设计与优化实践
2025-06-30 13:01:36作者:尤峻淳Whitney
项目概述
ClickPy是一个基于ClickHouse的分析项目,专门用于处理Python包索引(PyPI)的下载数据。该项目通过精心设计的数据库结构和物化视图,为PyPI下载数据提供了高效的分析能力。本文将深入解析ClickPy项目的数据库设计思路和技术实现。
数据库基础设计
默认数据库配置
ClickPy默认使用名为pypi的数据库,创建语句如下:
CREATE DATABASE pypi
核心数据表结构
PyPI下载数据表的设计考虑了数据特性和查询需求,仅保留了必要的字段:
CREATE OR REPLACE TABLE pypi.pypi
(
`date` Date,
`country_code` LowCardinality(String),
`project` String,
`type` LowCardinality(String),
`installer` LowCardinality(String),
`python_minor` LowCardinality(String),
`system` LowCardinality(String),
`version` String
)
ENGINE = MergeTree
ORDER BY (project, date, version, country_code, python_minor, system)
设计特点:
- 使用
LowCardinality类型优化低基数字符串存储 - 主键排序设计考虑了常见查询模式
- 去除了源数据中不必要的字段,减少存储和计算开销
物化视图体系
ClickPy构建了一套完整的物化视图系统,实现数据的预聚合和实时分析。
基础聚合视图
- 总下载量视图:按项目聚合总下载次数
- 版本下载量视图:按项目和版本聚合下载次数
- 每日下载量视图:按项目和日期聚合下载次数
CREATE TABLE pypi.pypi_downloads
(
`project` String,
`count` Int64
)
ENGINE = SummingMergeTree
ORDER BY project
多维分析视图
项目设计了多个维度的分析视图,满足不同分析需求:
- 地域维度:按国家/地区分析下载情况
- 技术维度:按Python版本、系统类型分析
- 时间维度:按日、月分析下载趋势
- 安装维度:按安装工具类型分析
CREATE TABLE pypi.pypi_downloads_per_day_by_version_by_country
(
`date` Date,
`project` String,
`version` String,
`country_code` String,
`count` Int64
)
ENGINE = SummingMergeTree
ORDER BY (project, version, date, country_code)
特殊分析视图
- 首末次下载时间:记录每个项目的首次和最后一次下载时间
- 近6月月度下载:专注于最近半年的下载趋势分析
CREATE TABLE pypi.pypi_downloads_max_min
(
`project` String,
`max_date` SimpleAggregateFunction(max, Date),
`min_date` SimpleAggregateFunction(min, Date)
)
ENGINE = AggregatingMergeTree
ORDER BY project
项目元数据表
除了下载数据,ClickPy还维护了一个项目元数据表,包含PyPI项目的详细信息:
CREATE TABLE pypi.projects
(
`metadata_version` String,
`name` String,
`version` String,
`summary` String,
`description` String,
-- 省略其他字段...
`upload_time` DateTime64,
`filename` String,
`size` Int64
-- 省略其他字段...
)
ENGINE = MergeTree
ORDER BY name
该表可通过公开的Parquet文件直接导入数据。
字典优化
ClickPy使用字典技术优化了频繁访问的数据:
- 国家代码字典:将国家代码映射为国家名称
- 项目最后更新时间字典:缓存项目的最后更新时间
CREATE DICTIONARY countries_dict
(
`name` String,
`code` String
)
PRIMARY KEY code
SOURCE(CLICKHOUSE(TABLE 'countries'))
LIFETIME(MIN 0 MAX 300)
LAYOUT(COMPLEX_KEY_HASHED())
设计亮点总结
- 存储优化:广泛使用LowCardinality类型和合适的排序键
- 查询优化:通过SummingMergeTree引擎实现高效聚合
- 实时分析:物化视图体系保证分析查询的快速响应
- 维度丰富:支持多维度、多层次的下载数据分析
- 数据完整:同时维护下载数据和项目元数据
这套设计为PyPI数据分析提供了高性能的基础设施,能够支持从宏观趋势到微观细节的各种分析需求。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39