ClickPy项目中的ClickHouse数据库设计与优化实践
2025-06-30 23:55:58作者:尤峻淳Whitney
项目概述
ClickPy是一个基于ClickHouse的分析项目,专门用于处理Python包索引(PyPI)的下载数据。该项目通过精心设计的数据库结构和物化视图,为PyPI下载数据提供了高效的分析能力。本文将深入解析ClickPy项目的数据库设计思路和技术实现。
数据库基础设计
默认数据库配置
ClickPy默认使用名为pypi的数据库,创建语句如下:
CREATE DATABASE pypi
核心数据表结构
PyPI下载数据表的设计考虑了数据特性和查询需求,仅保留了必要的字段:
CREATE OR REPLACE TABLE pypi.pypi
(
`date` Date,
`country_code` LowCardinality(String),
`project` String,
`type` LowCardinality(String),
`installer` LowCardinality(String),
`python_minor` LowCardinality(String),
`system` LowCardinality(String),
`version` String
)
ENGINE = MergeTree
ORDER BY (project, date, version, country_code, python_minor, system)
设计特点:
- 使用
LowCardinality类型优化低基数字符串存储 - 主键排序设计考虑了常见查询模式
- 去除了源数据中不必要的字段,减少存储和计算开销
物化视图体系
ClickPy构建了一套完整的物化视图系统,实现数据的预聚合和实时分析。
基础聚合视图
- 总下载量视图:按项目聚合总下载次数
- 版本下载量视图:按项目和版本聚合下载次数
- 每日下载量视图:按项目和日期聚合下载次数
CREATE TABLE pypi.pypi_downloads
(
`project` String,
`count` Int64
)
ENGINE = SummingMergeTree
ORDER BY project
多维分析视图
项目设计了多个维度的分析视图,满足不同分析需求:
- 地域维度:按国家/地区分析下载情况
- 技术维度:按Python版本、系统类型分析
- 时间维度:按日、月分析下载趋势
- 安装维度:按安装工具类型分析
CREATE TABLE pypi.pypi_downloads_per_day_by_version_by_country
(
`date` Date,
`project` String,
`version` String,
`country_code` String,
`count` Int64
)
ENGINE = SummingMergeTree
ORDER BY (project, version, date, country_code)
特殊分析视图
- 首末次下载时间:记录每个项目的首次和最后一次下载时间
- 近6月月度下载:专注于最近半年的下载趋势分析
CREATE TABLE pypi.pypi_downloads_max_min
(
`project` String,
`max_date` SimpleAggregateFunction(max, Date),
`min_date` SimpleAggregateFunction(min, Date)
)
ENGINE = AggregatingMergeTree
ORDER BY project
项目元数据表
除了下载数据,ClickPy还维护了一个项目元数据表,包含PyPI项目的详细信息:
CREATE TABLE pypi.projects
(
`metadata_version` String,
`name` String,
`version` String,
`summary` String,
`description` String,
-- 省略其他字段...
`upload_time` DateTime64,
`filename` String,
`size` Int64
-- 省略其他字段...
)
ENGINE = MergeTree
ORDER BY name
该表可通过公开的Parquet文件直接导入数据。
字典优化
ClickPy使用字典技术优化了频繁访问的数据:
- 国家代码字典:将国家代码映射为国家名称
- 项目最后更新时间字典:缓存项目的最后更新时间
CREATE DICTIONARY countries_dict
(
`name` String,
`code` String
)
PRIMARY KEY code
SOURCE(CLICKHOUSE(TABLE 'countries'))
LIFETIME(MIN 0 MAX 300)
LAYOUT(COMPLEX_KEY_HASHED())
设计亮点总结
- 存储优化:广泛使用LowCardinality类型和合适的排序键
- 查询优化:通过SummingMergeTree引擎实现高效聚合
- 实时分析:物化视图体系保证分析查询的快速响应
- 维度丰富:支持多维度、多层次的下载数据分析
- 数据完整:同时维护下载数据和项目元数据
这套设计为PyPI数据分析提供了高性能的基础设施,能够支持从宏观趋势到微观细节的各种分析需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136